scispace - formally typeset
Search or ask a question
Topic

Convex optimization

About: Convex optimization is a research topic. Over the lifetime, 24906 publications have been published within this topic receiving 908795 citations. The topic is also known as: convex optimisation.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper extends Nesterov’s technique for analyzing the RBCD method for minimizing a smooth convex function over a block-separable closed convex set to obtain a sharper expected-value type of convergence rate than the one implied in Richtárik and Takáč (Math Program 144(1–2):1–38, 2014).
Abstract: In this paper we analyze the randomized block-coordinate descent (RBCD) methods proposed in Nesterov (SIAM J Optim 22(2):341---362, 2012), Richtarik and Takaa? (Math Program 144(1---2):1---38, 2014) for minimizing the sum of a smooth convex function and a block-separable convex function, and derive improved bounds on their convergence rates. In particular, we extend Nesterov's technique developed in Nesterov (SIAM J Optim 22(2):341---362, 2012) for analyzing the RBCD method for minimizing a smooth convex function over a block-separable closed convex set to the aforementioned more general problem and obtain a sharper expected-value type of convergence rate than the one implied in Richtarik and Takaa? (Math Program 144(1---2):1---38, 2014). As a result, we also obtain a better high-probability type of iteration complexity. In addition, for unconstrained smooth convex minimization, we develop a new technique called randomized estimate sequence to analyze the accelerated RBCD method proposed by Nesterov (SIAM J Optim 22(2):341---362, 2012) and establish a sharper expected-value type of convergence rate than the one given in Nesterov (SIAM J Optim 22(2):341---362, 2012).

252 citations

Journal ArticleDOI
TL;DR: In this article, the authors consider methods for minimizing a convex function f that generate a sequence {xk} by taking xk+1 to be an approximate minimizer of f(x)+Dh(x,xk)/ck, where ck > 0 and Dh is the D-function of a Bregman function h.
Abstract: We consider methods for minimizing a convex function f that generate a sequence {xk} by taking xk+1 to be an approximate minimizer of f(x)+Dh(x,xk)/ck, where ck > 0 and Dh is the D-function of a Bregman function h. Extensions are made to B-functions that generalize Bregman functions and cover more applications. Convergence is established under criteria amenable to implementation. Applications are made to nonquadratic multiplier methods for nonlinear programs.

251 citations

Journal ArticleDOI
TL;DR: Numerical results not only demonstrate the close-to-optimal performance of the proposed suboptimal schemes but unveil an interesting tradeoff among the considered conflicting system design objectives as well.
Abstract: In this paper, we study resource allocation for multiuser multiple-input–single-output secondary communication systems with multiple system design objectives. We consider cognitive radio (CR) networks where the secondary receivers are able to harvest energy from the radio frequency when they are idle. The secondary system provides simultaneous wireless power and secure information transfer to the secondary receivers. We propose a multiobjective optimization framework for the design of a Pareto-optimal resource allocation algorithm based on the weighted Tchebycheff approach. In particular, the algorithm design incorporates three important system design objectives: total transmit power minimization, energy harvesting efficiency maximization, and interference-power-leakage-to-transmit-power ratio minimization. The proposed framework takes into account a quality-of-service (QoS) requirement regarding communication secrecy in the secondary system and the imperfection of the channel state information (CSI) of potential eavesdroppers (idle secondary receivers and primary receivers) at the secondary transmitter. The proposed framework includes total harvested power maximization and interference power leakage minimization as special cases. The adopted multiobjective optimization problem is nonconvex and is recast as a convex optimization problem via semidefinite programming (SDP) relaxation. It is shown that the global optimal solution of the original problem can be constructed by exploiting both the primal and the dual optimal solutions of the SDP-relaxed problem. Moreover, two suboptimal resource allocation schemes for the case when the solution of the dual problem is unavailable for constructing the optimal solution are proposed. Numerical results not only demonstrate the close-to-optimal performance of the proposed suboptimal schemes but unveil an interesting tradeoff among the considered conflicting system design objectives as well.

251 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a randomized second-order method for optimization known as the Newton sketch, which is based on performing an approximate Newton step using a randomly projected Hessian.
Abstract: We propose a randomized second-order method for optimization known as the Newton sketch: it is based on performing an approximate Newton step using a randomly projected Hessian. For self-concordant functions, we prove that the algorithm has superlinear convergence with exponentially high probability, with convergence and complexity guarantees that are independent of condition numbers and related problem-dependent quantities. Given a suitable initialization, similar guarantees also hold for strongly convex and smooth objectives without self-concordance. When implemented using randomized projections based on a subsampled Hadamard basis, the algorithm typically has substantially lower complexity than Newton's method. We also describe extensions of our methods to programs involving convex constraints that are equipped with self-concordant barriers. We discuss and illustrate applications to linear programs, quadratic programs with convex constraints, logistic regression, and other generalized linear models, as...

251 citations

Journal ArticleDOI
TL;DR: In this article, a distributed convex optimization framework is developed for energy trading between islanded microgrids, where the problem consists of several island-grids that exchange energy flows by means of an arbitrary topology, and a subgradient-based cost minimization algorithm is proposed that converges to the optimal solution in a practical number of iterations.
Abstract: In this paper, a distributed convex optimization framework is developed for energy trading between islanded microgrids. More specifically, the problem consists of several islanded microgrids that exchange energy flows by means of an arbitrary topology. Due to scalability issues and in order to safeguard local information on cost functions, a subgradient-based cost minimization algorithm is proposed that converges to the optimal solution in a practical number of iterations and with a limited communication overhead. Furthermore, this approach allows for a very intuitive economics interpretation that explains the algorithm iterations in terms of "supply--demand model" and "market clearing". Numerical results are given in terms of convergence rate of the algorithm and attained costs for different network topologies.

251 citations


Network Information
Related Topics (5)
Optimization problem
96.4K papers, 2.1M citations
94% related
Robustness (computer science)
94.7K papers, 1.6M citations
89% related
Linear system
59.5K papers, 1.4M citations
88% related
Markov chain
51.9K papers, 1.3M citations
86% related
Control theory
299.6K papers, 3.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023392
2022849
20211,461
20201,673
20191,677
20181,580