scispace - formally typeset
Search or ask a question
Topic

Convex optimization

About: Convex optimization is a research topic. Over the lifetime, 24906 publications have been published within this topic receiving 908795 citations. The topic is also known as: convex optimisation.


Papers
More filters
Journal ArticleDOI
TL;DR: To ensure scalability with respect to the number of nodes, robustness to isolated communication outages, and data privacy and integrity, the proposed SDP is solved in a distributed fashion by resorting to the alternating direction method of multipliers and guarantees faster convergence compared to competing alternatives.
Abstract: Optimal power flow (OPF) is considered for microgrids, with the objective of minimizing either the power distribution losses, or, the cost of power drawn from the substation and supplied by distributed generation (DG) units, while effecting voltage regulation. The microgrid is unbalanced, due to unequal loads in each phase and non-equilateral conductor spacings on the distribution lines. Similar to OPF formulations for balanced systems, the considered OPF problem is nonconvex. Nevertheless, a semidefinite programming (SDP) relaxation technique is advocated to obtain a convex problem solvable in polynomial-time complexity. Enticingly, numerical tests demonstrate the ability of the proposed method to attain the globally optimal solution of the original nonconvex OPF. To ensure scalability with respect to the number of nodes, robustness to isolated communication outages, and data privacy and integrity, the proposed SDP is solved in a distributed fashion by resorting to the alternating direction method of multipliers. The resulting algorithm entails iterative message-passing among groups of consumers and guarantees faster convergence compared to competing alternatives

602 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that the load flow problem of a radial distribution system can be modeled as a convex optimization problem, particularly a conic program, which facilitates the inclusion of the distribution power flow equations in radial system optimization problems.
Abstract: This paper shows that the load flow problem of a radial distribution system can be modeled as a convex optimization problem, particularly a conic program. The implications of the conic programming formulation are threefold. First, the solution of the distribution load flow problem can be obtained in polynomial time using interior-point methods. Second, numerical ill-conditioning can be automatically alleviated by the use of scaling in the interior-point algorithm. Third, the conic formulation facilitates the inclusion of the distribution power flow equations in radial system optimization problems. A state-of-the-art implementation of an interior-point method for conic programming is used to obtain the solution of nine different distribution systems. Comparisons are carried out with a previously published radial load flow program by R. Cespedes

592 citations

Journal ArticleDOI
TL;DR: This paper proposes the use of the alternating direction method - a classic approach for optimization problems with separable variables - for signal reconstruction from partial Fourier measurements, and runs very fast (typically in a few seconds on a laptop) because it requires a small number of iterations.
Abstract: Recent compressive sensing results show that it is possible to accurately reconstruct certain compressible signals from relatively few linear measurements via solving nonsmooth convex optimization problems. In this paper, we propose the use of the alternating direction method - a classic approach for optimization problems with separable variables (D. Gabay and B. Mercier, ?A dual algorithm for the solution of nonlinear variational problems via finite-element approximations,? Computer and Mathematics with Applications, vol. 2, pp. 17-40, 1976; R. Glowinski and A. Marrocco, ?Sur lapproximation par elements finis dordre un, et la resolution par penalisation-dualite dune classe de problemes de Dirichlet nonlineaires,? Rev. Francaise dAut. Inf. Rech. Oper., vol. R-2, pp. 41-76, 1975) - for signal reconstruction from partial Fourier (i.e., incomplete frequency) measurements. Signals are reconstructed as minimizers of the sum of three terms corresponding to total variation, ?1-norm of a certain transform, and least squares data fitting. Our algorithm, called RecPF and published online, runs very fast (typically in a few seconds on a laptop) because it requires a small number of iterations, each involving simple shrinkages and two fast Fourier transforms (or alternatively discrete cosine transforms when measurements are in the corresponding domain). RecPF was compared with two state-of-the-art algorithms on recovering magnetic resonance images, and the results show that it is highly efficient, stable, and robust.

591 citations

Journal ArticleDOI
TL;DR: In this paper, a regularized variant of projected subgradient method for nonsmooth, nonstrictly convex minimization in real Hilbert spaces is presented, where only one projection step is needed per iteration and involved stepsizes are controlled so that the algorithm is of practical interest.
Abstract: In this paper, we establish a strong convergence theorem regarding a regularized variant of the projected subgradient method for nonsmooth, nonstrictly convex minimization in real Hilbert spaces. Only one projection step is needed per iteration and the involved stepsizes are controlled so that the algorithm is of practical interest. To this aim, we develop new techniques of analysis which can be adapted to many other non-Fejerian methods.

591 citations

Journal ArticleDOI
TL;DR: This work begins with the standard design under the assumption of a total power constraint and proves that precoders based on the pseudo-inverse are optimal among the generalized inverses in this setting, and examines individual per-antenna power constraints.
Abstract: We consider the problem of linear zero-forcing precoding design and discuss its relation to the theory of generalized inverses in linear algebra. Special attention is given to a specific generalized inverse known as the pseudo-inverse. We begin with the standard design under the assumption of a total power constraint and prove that precoders based on the pseudo-inverse are optimal among the generalized inverses in this setting. Then, we proceed to examine individual per-antenna power constraints. In this case, the pseudo-inverse is not necessarily the optimal inverse. In fact, finding the optimal matrix is nontrivial and depends on the specific performance measure. We address two common criteria, fairness and throughput, and show that the optimal generalized inverses may be found using standard convex optimization methods. We demonstrate the improved performance offered by our approach using computer simulations.

588 citations


Network Information
Related Topics (5)
Optimization problem
96.4K papers, 2.1M citations
94% related
Robustness (computer science)
94.7K papers, 1.6M citations
89% related
Linear system
59.5K papers, 1.4M citations
88% related
Markov chain
51.9K papers, 1.3M citations
86% related
Control theory
299.6K papers, 3.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023392
2022849
20211,461
20201,673
20191,677
20181,580