scispace - formally typeset
Search or ask a question
Topic

Coordinate system

About: Coordinate system is a research topic. Over the lifetime, 22675 publications have been published within this topic receiving 269822 citations. The topic is also known as: system of coordinates.


Papers
More filters
Journal ArticleDOI
TL;DR: A closed-form solution to the least-squares problem for three or more paints is presented, simplified by use of unit quaternions to represent rotation.
Abstract: Finding the relationship between two coordinate systems using pairs of measurements of the coordinates of a number of points in both systems is a classic photogrammetric task . It finds applications i n stereoph and in robotics . I present here a closed-form solution to the least-squares problem for three or more paints . Currently various empirical, graphical, and numerical iterative methods are in use . Derivation of the solution i s simplified by use of unit quaternions to represent rotation . I emphasize a symmetry property that a solution to thi s problem ought to possess . The best translational offset is the difference between the centroid of the coordinates i n one system and the rotated and scaled centroid of the coordinates in the other system . The best scale is equal to th e ratio of the root-mean-square deviations of the coordinates in the two systems from their respective centroids . These exact results are to be preferred to approximate methods based on measurements of a few selected points . The unit quaternion representing the best rotation is the eigenvector associated with the most positive eigenvalue o f a symmetric 4 X 4 matrix . The elements of this matrix are combinations of sums of products of correspondin g coordinates of the points .

4,522 citations

Journal ArticleDOI
TL;DR: This paper presents a joint coordinate system that provides a simple geometric description of the three-dimensional rotational and translational motion between two rigid bodies.
Abstract: The experimental study of joint kinematics in three dimensions requires the description and measurement of six motion components. An important aspect of any method of description is the ease with which it is communicated to those who use the data. This paper presents a joint coordinate system that provides a simple geometric description of the three-dimensional rotational and translational motion between two rigid bodies. The coordinate system is applied to the knee and related to the commonly used clinical terms for knee joint motion. A convenient characteristic of the coordinate system shared by spatial linkages is that large joint displacements are independent of the order in which the component translations and rotations occur.

3,484 citations

Journal ArticleDOI
TL;DR: In this article, a method for treating a complex structure as an assemblage of distinct regions, or substructures, is presented using basic mass and stiffness matrices, together with conditions of geometrical compatibility along substructure boundaries.
Abstract: A method for treating a complex structure as an assemblage of distinct regions, or substructures, is presented. Using basic mass and stiffness matrices for the substructures, together with conditions of geometrical compatibility along substructure boundaries, the method employs two forms of generalized coordinates. Boundary generalized coordinates give displacements and rotations of points along substructure boundaries and are related to the displacement modes of the substructures known as "constraint modes." All constraint modes are generated by matrix operations from substructure input data. Substructure normal-mode generalized coordinates are related to free vibration modes of the substructures relative to completely restrained boundaries. The definition of substructure modes and the requirement of compatibility along substructure boundaries lead to coordinate transformation matrices that are employed in obtaining system mass and stiffness matrices from the mass and stiffness matrices of the substructures. Provision is made, through a RayleighRitz procedure, for reducing the total number of degrees of freedom of a structure while retaining accurate description of its dynamic behavior. Substructure boundaries may have any degree of redundancy. An example is presented giving a free vibration analysis of a structure having a highly indeterminate substructure boundary.

3,035 citations

Journal ArticleDOI
TL;DR: This work has developed a means for generating an average folding pattern across a large number of individual subjects as a function on the unit sphere and of nonrigidly aligning each individual with the average, establishing a spherical surface‐based coordinate system that is adapted to the folding pattern of each individual subject, allowing for much higher localization accuracy of structural and functional features of the human brain.
Abstract: The neurons of the human cerebral cortex are arranged in a highly folded sheet, with the majority of the cortical surface area buried in folds. Cortical maps are typically arranged with a topography oriented parallel to the cortical surface. Despite this unambiguous sheetlike geometry, the most commonly used coordinate systems for localizing cortical features are based on 3-D stereotaxic coordinates rather than on position relative to the 2-D cortical sheet. In order to address the need for a more natural surface-based coordinate system for the cortex, we have developed a means for generating an average folding pattern across a large number of individual subjects as a function on the unit sphere and of nonrigidly aligning each individual with the average. This establishes a spherical surface-based coordinate system that is adapted to the folding pattern of each individual subject, allowing for much higher localization accuracy of structural and functional features of the human brain.

3,024 citations

Journal ArticleDOI
TL;DR: A new conceptually simple approach to controlling compliant motions of a robot manipulator that combines force and torque information with positional data to satisfy simultaneous position and force trajectory constraints specified in a convenient task related coordinate system is presented.
Abstract: A new conceptually simple approach to controlling compliant motions of a robot manipulator is presented. The 'hybrid' technique described combines force and torque information with positional data to satisfy simultaneous position and force trajectory constraints specified in a convenient task related coordinate system. Analysis, simulation, and experiments are used to evaluate the controller's ability to execute trajectories using feedback from a force sensing wrist and from position sensors found in the manipulator joints. The results show that the method achieves stable, accurate control of force and position trajectories for a variety of test conditions.

2,991 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
85% related
Matrix (mathematics)
105.5K papers, 1.9M citations
83% related
Boundary value problem
145.3K papers, 2.7M citations
83% related
Differential equation
88K papers, 2M citations
81% related
Artificial neural network
207K papers, 4.5M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023235
2022553
2021549
20201,365
20191,814
20181,569