scispace - formally typeset
Search or ask a question
Topic

Coordination sphere

About: Coordination sphere is a research topic. Over the lifetime, 7163 publications have been published within this topic receiving 156412 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The authors present here a classification and structure/function analysis of native metal sites based on these functions, and the coordination chemistry of metalloprotein sites and the unique properties of a protein as a ligand are briefly summarized.
Abstract: For present purposes, a protein-bound metal site consists of one or more metal ions and all protein side chain and exogenous bridging and terminal ligands that define the first coordination sphere of each metal ion. Such sites can be classified into five basic types with the indicated functions: (1) structural -- configuration (in part) of protein tertiary and/or quaternary structure; (2) storage -- uptake, binding, and release of metals in soluble form: (3) electron transfer -- uptake, release, and storage of electrons; (4) dioxygen binding -- metal-O{sub 2} coordination and decoordination; and (5) catalytic -- substrate binding, activation, and turnover. The authors present here a classification and structure/function analysis of native metal sites based on these functions, where 5 is an extensive class subdivided by the type of reaction catalyzed. Within this purview, coverage of the various site types is extensive, but not exhaustive. The purpose of this exposition is to present examples of all types of sites and to relate, insofar as is currently feasible, the structure and function of selected types. The authors largely confine their considerations to the sites themselves, with due recognition that these site features are coupled to protein structure at all levels. In themore » next section, the coordination chemistry of metalloprotein sites and the unique properties of a protein as a ligand are briefly summarized. Structure/function relationships are systematically explored and tabulations of structurally defined sites presented. Finally, future directions in bioinorganic research in the context of metal site chemistry are considered. 620 refs.« less

2,242 citations

Journal ArticleDOI
TL;DR: In this paper, an investigation was made of the temperature and frequency dependence of T2 for O17 in aqueous solutions containing Mn2+, Fe2+, Co2+, Ni2+, and Cu2+.
Abstract: An investigation was made of the temperature and frequency dependence of T2 for O17 in aqueous solutions containing Mn2+, Fe2+, Co2+, Ni2+, and Cu2+. This represented an extension of the studies previously performed in this laboratory on these ions. Virtually all of the temperature effects predicted by the modified Bloch equations for a two‐species system were verified experimentally. Rates of exchange of water molecules between the bulk of the solution and the first coordination sphere of the paramagnetic cations were determined for all the ions studied. Activation energies for exchange were measured and electronic T1's and coupling constants were determined in some cases. Evidence was found for a tetrahedral Co2+(H2O)4 species in aqueous solutions near 100°C. The data for cupric ion were interpreted in terms of six coordinated water molecules in a distorted octahedron, with a ratio of ∼105 existing for the axial‐water‐exchange rate over that of the equatorial waters. The rates of exchange were compared ...

1,200 citations

Journal ArticleDOI
TL;DR: In this article, the concept of the continuous shape measures is summarized and the derived tools, the shape maps and the path deviation functions are described, the main stereochemical trends that have been deduced from the application of such tools to more than 23,000 crystallographically independent fragments of coordination numbers between four and eight are also summarized.

827 citations

Journal ArticleDOI
P Cossee1
TL;DR: In this paper, a mechanism for the polymerization of olefins is proposed, which involves to a first approximation an electronic rearrangement and only small nuclear displacements.

817 citations

Journal ArticleDOI
TL;DR: Both stereochemical and mechanistic considerations suggest that the small organic molecule found at the Fe-only hydrogenase active site and previously modeled as 1,3-propanedithiolate may, in fact, be di-(thiomethyl)-amine.
Abstract: Fe-only hydrogenases, as well as their NiFe counterparts, display unusual intrinsic high-frequency IR bands that have been assigned to CO and CN(-) ligation to iron in their active sites. FTIR experiments performed on the Fe-only hydrogenase from Desulfovibrio desulfuricans indicate that upon reduction of the active oxidized form, there is a major shift of one of these bands that is provoked, most likely, by the change of a CO ligand from a bridging position to a terminal one. Indeed, the crystal structure of the reduced active site of this enzyme shows that the previously bridging CO is now terminally bound to the iron ion that most likely corresponds to the primary hydrogen binding site (Fe2). The CO binding change may result from changes in the coordination sphere of Fe2 or its reduction. Superposition of this reduced active site with the equivalent region of a NiFe hydrogenase shows a remarkable coincidence between the coordination of Fe2 and that of the Fe ion in the NiFe cluster. Both stereochemical and mechanistic considerations suggest that the small organic molecule found at the Fe-only hydrogenase active site and previously modeled as 1,3-propanedithiolate may, in fact, be di-(thiomethyl)-amine.

738 citations


Network Information
Related Topics (5)
Ligand
67.7K papers, 1.3M citations
96% related
Hydrogen bond
57.7K papers, 1.3M citations
94% related
Crystal structure
100.9K papers, 1.5M citations
92% related
Molecule
52.4K papers, 1.2M citations
91% related
Nuclear magnetic resonance spectroscopy
42.6K papers, 1M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202390
2022178
2021240
2020256
2019232
2018238