scispace - formally typeset
Search or ask a question
Topic

Coronaviridae

About: Coronaviridae is a research topic. Over the lifetime, 539 publications have been published within this topic receiving 39219 citations. The topic is also known as: Coronaviruses & Coronavirus.


Papers
More filters
Journal ArticleDOI
TL;DR: The novel coronavirus might have a role in causing SARS and was detected in a variety of clinical specimens from patients with SARS but not in controls.
Abstract: BACKGROUND: The severe acute respiratory syndrome (SARS) has recently been identified as a new clinical entity. SARS is thought to be caused by an unknown infectious agent. METHODS: Clinical specimens from patients with SARS were searched for unknown viruses with the use of cell cultures and molecular techniques. RESULTS: A novel coronavirus was identified in patients with SARS. The virus was isolated in cell culture, and a sequence 300 nucleotides in length was obtained by a polymerase-chain-reaction (PCR)-based random-amplification procedure. Genetic characterization indicated that the virus is only distantly related to known coronaviruses (identical in 50 to 60 percent of the nucleotide sequence). On the basis of the obtained sequence, conventional and real-time PCR assays for specific and sensitive detection of the novel virus were established. Virus was detected in a variety of clinical specimens from patients with SARS but not in controls. High concentrations of viral RNA of up to 100 million molecules per milliliter were found in sputum. Viral RNA was also detected at extremely low concentrations in plasma during the acute phase and in feces during the late convalescent phase. Infected patients showed seroconversion on the Vero cells in which the virus was isolated. CONCLUSIONS: The novel coronavirus might have a role in causing SARS.

4,180 citations

Journal ArticleDOI
30 May 2003-Science
TL;DR: Phylogenetic analyses and sequence comparisons showed that SARS-CoV is not closelyrelated to any of the previouslycharacterized coronaviruses.
Abstract: In March 2003, a novel coronavirus (SARS-CoV) was discovered in association with cases of severe acute respiratory syndrome (SARS). The sequence of the complete genome of SARS-CoV was determined, and the initial characterization of the viral genome is presented in this report. The genome of SARS-CoV is 29,727 nucleotides in length and has 11 open reading frames, and its genome organization is similar to that of other coronaviruses. Phylogenetic analyses and sequence comparisons showed that SARS-CoV is not closely related to any of the previously characterized coronaviruses.

2,420 citations

Journal ArticleDOI
30 May 2003-Science
TL;DR: The genome sequence reveals that the severe acute respiratory syndrome–associated coronavirus known as the Tor2 isolate is only moderately related to other known coronaviruses, andylogenetic analysis of the predicted viral proteins indicates that the virus does not closely resemble any of the three previously known groups of coronavirs.
Abstract: We sequenced the 29,751-base genome of the severe acute respiratory syndrome (SARS)-associated coronavirus known as the Tor2 isolate. The genome sequence reveals that this coronavirus is only moderately related to other known coronaviruses, including two human coronaviruses, HCoV-OC43 and HCoV-229E. Phylogenetic analysis of the predicted viral proteins indicates that the virus does not closely resemble any of the three previously known groups of coronaviruses. The genome sequence will aid in the diagnosis of SARS virus infection in humans and potential animal hosts (using polymerase chain reaction and immunological tests), in the development of antivirals (including neutralizing antibodies), and in the identification of putative epitopes for vaccine development.

2,056 citations

Journal ArticleDOI
TL;DR: The data support the existence of a novel group 2 coronavirus associated with pneumonia in humans, CoV-HKU1, from a 71-year-old man with pneumonia who had just returned from Shenzhen, China.
Abstract: Despite extensive laboratory investigations in patients with respiratory tract infections, no microbiological cause can be identified in a significant proportion of patients. In the past 3 years, several novel respiratory viruses, including human metapneumovirus, severe acute respiratory syndrome (SARS) coronavirus (SARSCoV), and human coronavirus NL63, were discovered. Here we report the discovery of another novel coronavirus, coronavirus HKU1 (CoV-HKU1), from a 71-year-old man with pneumonia who had just returned from Shenzhen, China. Quantitative reverse transcription-PCR showed that the amount of CoV-HKU1 RNA was 8.5 to 9.6 10 6 copies per ml in his nasopharyngeal aspirates (NPAs) during the first week of the illness and dropped progressively to undetectable levels in subsequent weeks. He developed increasing serum levels of specific antibodies against the recombinant nucleocapsid protein of CoV-HKU1, with immunoglobulin M (IgM) titers of 1:20, 1:40, and 1:80 and IgG titers of <1:1,000, 1:2,000, and 1:8,000 in the first, second and fourth weeks of the illness, respectively. Isolation of the virus by using various cell lines, mixed neuron-glia culture, and intracerebral inoculation of suckling mice was unsuccessful. The complete genome sequence of CoV-HKU1 is a 29,926-nucleotide, polyadenylated RNA, with GC content of 32%, the lowest among all known coronaviruses with available genome sequence. Phylogenetic analysis reveals that CoV-HKU1 is a new group 2 coronavirus. Screening of 400 NPAs, negative for SARS-CoV, from patients with respiratory illness during the SARS period identified the presence of CoV-HKU1 RNA in an additional specimen, with a viral load of 1.13 10 6 copies per ml, from a 35-year-old woman with pneumonia. Our data support the existence of a novel group 2 coronavirus associated with pneumonia in humans.

1,356 citations

Posted ContentDOI
11 Feb 2020-bioRxiv
TL;DR: The Coronavirus Study Group (CSG) of the International Committee on Taxonomy of Viruses assessed the novelty of the human pathogen tentatively named 2019-nCoV and formally recognizes this virus as a sister to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Abstract: The present outbreak of lower respiratory tract infections, including respiratory distress syndrome, is the third spillover, in only two decades, of an animal coronavirus to humans resulting in a major epidemic. Here, the Coronavirus Study Group (CSG) of the International Committee on Taxonomy of Viruses, which is responsible for developing the official classification of viruses and taxa naming (taxonomy) of the Coronaviridae family, assessed the novelty of the human pathogen tentatively named 2019-nCoV. Based on phylogeny, taxonomy and established practice, the CSG formally recognizes this virus as a sister to severe acute respiratory syndrome coronaviruses (SARS-CoVs) of the species Severe acute respiratory syndrome-related coronavirus and designates it as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To facilitate communication, the CSG further proposes to use the following naming convention for individual isolates: SARS-CoV-2/Isolate/Host/Date/Location. The spectrum of clinical manifestations associated with SARS-CoV-2 infections in humans remains to be determined. The independent zoonotic transmission of SARS-CoV and SARS-CoV-2 highlights the need for studying the entire (virus) species to complement research focused on individual pathogenic viruses of immediate significance. This research will improve our understanding of virus-host interactions in an ever-changing environment and enhance our preparedness for future outbreaks.

1,057 citations


Network Information
Related Topics (5)
Viral replication
33.4K papers, 1.6M citations
90% related
Virus
136.9K papers, 5.2M citations
89% related
Viral load
26.7K papers, 1M citations
83% related
Virulence
35.9K papers, 1.3M citations
82% related
Polymerase
23.4K papers, 1M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202365
2022168
202180
202092
20195
20184