scispace - formally typeset
Search or ask a question

Showing papers on "Correlation function (statistical mechanics) published in 2015"


Journal ArticleDOI
TL;DR: A general matrix formula is derived of the semi-partial correlation for fast computation and it is shown that users can readily calculate the coefficients of both partial and semi- partial correlations without computational burden.
Abstract: Lack of a general matrix formula hampers implementation of the semi-partial correlation, also known as part correlation, to the higher-order coefficient. This is because the higher-order semi-partial correlation calculation using a recursive formula requires an enormous number of recursive calculations to obtain the correlation coefficients. To resolve this difficulty, we derive a general matrix formula of the semi-partial correlation for fast computation. The semi-partial correlations are then implemented on an R package ppcor along with the partial correlation. Owing to the general matrix formulas, users can readily calculate the coefficients of both partial and semi-partial correlations without computational burden. The package ppcor further provides users with the level of the statistical significance with its test statistic.

682 citations


Journal ArticleDOI
10 Apr 2015-Science
TL;DR: It is shown experimentally that a degenerate one-dimensional Bose gas relaxes to a state that can be described by such a generalized ensemble, and this is verified through a detailed study of correlation functions up to 10th order.
Abstract: The description of the non-equilibrium dynamics of isolated quantum many-body systems within the framework of statistical mechanics is a fundamental open question. Conventional thermodynamical ensembles fail to describe the large class of systems that exhibit nontrivial conserved quantities, and generalized ensembles have been predicted to maximize entropy in these systems. We show experimentally that a degenerate one-dimensional Bose gas relaxes to a state that can be described by such a generalized ensemble. This is verified through a detailed study of correlation functions up to 10th order. The applicability of the generalized ensemble description for isolated quantum many-body systems points to a natural emergence of classical statistical properties from the microscopic unitary quantum evolution.

541 citations


Journal ArticleDOI
TL;DR: In this article, the uncertainty of a PIV displacement field is estimated using a generic post-processing method based on statistical analysis of the correlation process using differences in the intensity pattern in the two images.
Abstract: The uncertainty of a PIV displacement field is estimated using a generic post-processing method based on statistical analysis of the correlation process using differences in the intensity pattern in the two images. First the second image is dewarped back onto the first one using the computed displacement field which provides two almost perfectly matching images. Differences are analyzed regarding the effect of shifting the peak of the correlation function. A relationship is derived between the standard deviation of intensity differences in each interrogation window and the expected asymmetry of the correlation peak, which is then converted to the uncertainty of a displacement vector. This procedure is tested with synthetic data for various types of noise and experimental conditions (pixel noise, out-of-plane motion, seeding density, particle image size, etc) and is shown to provide an accurate estimate of the true error.

519 citations


Journal ArticleDOI
TL;DR: In this paper, the effect of large scale motions in the Effective Field Theory of Large Scale Structures (EFT) has been resumated using a Lagrangian-based approach.
Abstract: We present a new method to resum the effect of large scale motions in the Effective Field Theory of Large Scale Structures. Because the linear power spectrum in ΛCDM is not scale free the effects of the large scale flows are enhanced. Although previous EFT calculations of the equal-time density power spectrum at one and two loops showed a remarkable agreement with numerical results, they also showed a 2% residual which appeared related to the BAO oscillations. We show that this was indeed the case, explain the physical origin and show how a Lagrangian based calculation removes this differences. We propose a simple method to upgrade existing Eulerian calculations to effectively make them Lagrangian and compare the new results with existing fits to numerical simulations. Our new two-loop results agrees with numerical results up to k~ 0.6 h Mpc−1 to within 1% with no oscillatory residuals. We also compute power spectra involving momentum which is significantly more affected by the large scale flows. We show how keeping track of these velocities significantly enhances the UV reach of the momentum power spectrum in addition to removing the BAO related residuals. We compute predictions for the real space correlation function around the BAO scale and investigate its sensitivity to the EFT parameters and the details of the resummation technique.

254 citations


Journal ArticleDOI
TL;DR: In this paper, the authors derive nonperturbative analytical expressions for all correlation functions of scalar perturbations in single-field, slow-roll inflation, and recover the standard, classical formulas as saddle-point limits of the full results.
Abstract: Combining the stochastic and \(\delta N\) formalisms, we derive non-perturbative analytical expressions for all correlation functions of scalar perturbations in single-field, slow-roll inflation. The standard, classical formulas are recovered as saddle-point limits of the full results. This yields a classicality criterion that shows that stochastic effects are small only if the potential is sub-Planckian and not too flat. The saddle-point approximation also provides an expansion scheme for calculating stochastic corrections to observable quantities perturbatively in this regime. In the opposite regime, we show that a strong suppression in the power spectrum is generically obtained, and we comment on the physical implications of this effect.

210 citations


Journal ArticleDOI
TL;DR: In this article, a non-perturbative generalization of the Lellouch-Luscher formula relating matrix elements of currents in finite and infinite spatial volumes is presented.
Abstract: We perform a model-independent, non-perturbative investigation of two-point and three-point finite-volume correlation functions in the energy regime where two-particle states can go on-shell. We study three-point functions involving a single incoming particle and an outgoing two-particle state, relevant, for example, for studies of meson decays (e.g., B⁰ → K*l⁺l⁻) or meson photo production (e.g., πγ* → ππ). We observe that, while the spectrum solely depends upon the on-shell scattering amplitude, the correlation functions also depend upon off-shell amplitudes. The main result of this work is a non-perturbative generalization of the Lellouch-Luscher formula relating matrix elements of currents in finite and infinite spatial volumes. We extend that work by considering a theory with multiple, strongly-coupled channels and by accommodating external currents which inject arbitrary four-momentum as well as arbitrary angular-momentum. The result is exact up to exponentially suppressed corrections governed by the pion mass times the box size. We also apply our master equation to various examples, including two processes mentioned above as well as examples where the final state is an admixture of two open channels.

104 citations


Journal ArticleDOI
TL;DR: In this paper, a functional renormalization group approach is proposed for the direct computation of real-time correlation functions, also applicable at finite temperature and density, and a general class of regulators that preserve the space-time symmetries, and allow the computation of correlation functions at complex frequencies.
Abstract: We put forward a functional renormalization group approach for the direct computation of real time correlation functions, also applicable at finite temperature and density. We construct a general class of regulators that preserve the space-time symmetries, and allows the computation of correlation functions at complex frequencies. This includes both imaginary time and real time, and allows in particular the use of the plethora of imaginary time results for the computation of real time correlation functions. We also discuss real time computation on the Keldysh contour with general spatial momentum regulators. Both setups give access to the general momentum and frequency dependence of correlation functions.

86 citations


Journal ArticleDOI
26 May 2015-PLOS ONE
TL;DR: Correlation functions and the associated stochastic reconstruction algorithms introduced here are universally applicable in soil science, such as for soil classification, pore-scale modelling of soil properties, soil degradation monitoring, and description of spatial dynamics of soil microbial activity.
Abstract: Structural features of porous materials such as soil define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, or gas exchange between biologically active soil root zone and atmosphere) and solute transport. To characterize soil microstructure, conventional soil science uses such metrics as pore size and pore-size distributions and thin section-derived morphological indicators. However, these descriptors provide only limited amount of information about the complex arrangement of soil structure and have limited capability to reconstruct structural features or predict physical properties. We introduce three different spatial correlation functions as a comprehensive tool to characterize soil microstructure: 1) two-point probability functions, 2) linear functions, and 3) two-point cluster functions. This novel approach was tested on thin-sections (2.21×2.21 cm2) representing eight soils with different pore space configurations. The two-point probability and linear correlation functions were subsequently used as a part of simulated annealing optimization procedures to reconstruct soil structure. Comparison of original and reconstructed images was based on morphological characteristics, cluster correlation functions, total number of pores and pore-size distribution. Results showed excellent agreement for soils with isolated pores, but relatively poor correspondence for soils exhibiting dual-porosity features (i.e. superposition of pores and micro-cracks). Insufficient information content in the correlation function sets used for reconstruction may have contributed to the observed discrepancies. Improved reconstructions may be obtained by adding cluster and other correlation functions into reconstruction sets. Correlation functions and the associated stochastic reconstruction algorithms introduced here are universally applicable in soil science, such as for soil classification, pore-scale modelling of soil properties, soil degradation monitoring, and description of spatial dynamics of soil microbial activity.

85 citations


Journal ArticleDOI
TL;DR: In this article, the authors analyzed steady-state solute transport in three-dimensional locally isotropic heterogeneous porous media with blockwise anisotropic correlation structure, in which the principal directions of anisotropy differ from block to block.
Abstract: Groundwater plumes originating from continuously emitting sources are typically controlled by transverse mixing between the plume and reactants in the ambient solution. In two-dimensional domains, heterogeneity causes only weak enhancement of transverse mixing in steady-state flows. In three-dimensional domains, more complex flow patterns are possible because streamlines can twist. In particular, spatially varying orientation of anisotropy can cause steady-state groundwater whirls. We analyze steady-state solute transport in three-dimensional locally isotropic heterogeneous porous media with blockwise anisotropic correlation structure, in which the principal directions of anisotropy differ from block to block. For this purpose, we propose a transport scheme that relies on advective transport along streamlines and transverse-dispersive mass exchange between them based on Voronoi tessellation. We compare flow and transport results obtained for a nonstationary anisotropic log-hydraulic conductivity field to an equivalent stationary field with identical mean, variance, and two-point correlation function disregarding the nonstationarity. The nonstationary anisotropic field is affected by mean secondary motion and causes neighboring streamlines to strongly diverge, which can be quantified by the two-particle semivariogram of lateral advective displacements. An equivalent kinematic descriptor of the flow field is the advective folding of plumes, which is more relevant as precursor of mixing than stretching. The separation of neighboring streamlines enhances transverse mixing when considering local dispersion. We quantify mixing by the flux-related dilution index, which is substantially larger for the nonstationary anisotropic conductivity field than for the stationary one. We conclude that nonstationary anisotropy in the correlation structure has a significant impact on transverse plume deformation and mixing. In natural sediments, contaminant plumes most likely mix more effectively in the transverse directions than predicted by models that neglect the nonstationarity of anisotropy.

79 citations


Journal ArticleDOI
TL;DR: Analysis of the height fluctuations, ⟨h2⟩, shows that the bending rigidity and variance of height fluctuations are strongly temperature dependent and this is explained using the continuum theory of membranes.
Abstract: Structural and thermodynamical properties of monolayer pristine and defective boron nitride sheets (h-BN) have been investigated in a wide temperature range by carrying out atomistic simulations using a tuned Tersoff-type inter-atomic empirical potential. The temperature dependence of lattice parameter, radial distribution function, specific heat at constant volume, linear thermal expansion coefficient and the height correlation function of the thermally excited ripples on pristine as well as defective h-BN sheet have been investigated. Specific heat shows considerable increase beyond the Dulong-Petit limit at high temperatures, which is interpreted as a signature of strong anharmonicity present in h-BN. Analysis of the height fluctuations, ⟨h2⟩, shows that the bending rigidity and variance of height fluctuations are strongly temperature dependent and this is explained using the continuum theory of membranes. A detailed study of the height-height correlation function shows deviation from the prediction of harmonic theory of membranes as a consequence of the strong anharmonicity in h-BN. It is also seen that the variance of the height fluctuations increases with defect concentration.

63 citations


Journal ArticleDOI
TL;DR: Physical effects influencing 0.5-2 GHz brightness temperatures of layered polar firn to support the Ultra Wide Band Software Defined Radiometer (UWBRAD) experiment to be conducted in Greenland and in Antarctica are investigated.
Abstract: We investigate physical effects influencing 0.5-2 GHz brightness temperatures of layered polar firn to support the Ultra Wide Band Software Defined Radiometer (UWBRAD) experiment to be conducted in Greenland and in Antarctica. We find that because ice particle grain sizes are very small compared to the 0.5-2 GHz wavelengths, volume scattering effects are small. Variations in firn density over cm- to m-length scales, however, cause significant effects. Both incoherent and coherent models are used to examine these effects. Incoherent models include a 'cloud model' that neglects any reflections internal to the ice sheet, and the DMRT-ML and MEMLS radiative transfer codes that are publicly available. The coherent model is based on the layered medium implementation of the fluctuation dissipation theorem for thermal microwave radiation from a medium having a nonuniform temperature. Density profiles are modeled using a stochastic approach, and model predictions are averaged over a large number of realizations to take into account an averaging over the radiometer footprint. Density profiles are described by combining a smooth average density profile with a spatially correlated random process to model density fluctuations. It is shown that coherent model results after ensemble averaging depend on the correlation lengths of the vertical density fluctuations. If the correlation length is moderate or long compared with the wavelength (approximately 0.6x longer or greater for Gaussian correlation function without regard for layer thinning due to compaction), coherent and incoherent model results are similar (within approximately 1 K). However, when the correlation length is short compared to the wavelength, coherent model results are significantly different from the incoherent model by several tens of kelvins. For a 10-cm correlation length, the differences are significant between 0.5 and 1.1 GHz, and less for 1.1-2 GHz. Model results are shown to be able to match the v-pol SMOS data closely and predict the h-pol data for small observation angles.

Book ChapterDOI
01 Jan 2015
TL;DR: In this paper, the authors discuss coherent X-ray scattering, photon statistics of speckle patterns, and Xray photon correlation spectroscopy (XPCS) for nonequilibrium and heterogeneous dynamics.
Abstract: In this chapter we discuss coherent X-ray scattering, photon statistics of speckle patterns, and X-ray photon correlation spectroscopy (XPCS). XPCS is a coherent X-ray scattering technique used to characterize dynamic properties of condensed matter by recording a fluctuating speckle pattern. In the experiments, the time correlation function of the scattered intensity is calculated at different momentum transfers Q and thereby detailed information about the dynamics is obtained. Recently, XPCS applications have broadened to include the study of nonequilibrium and heterogeneous dynamics, e.g., in systems close to jamming or at the glass transition. This is enabled through multi-speckle techniques where a 2D area detector (CCDs or pixel detectors) is employed, and the correlation function is evaluated by averaging over subsets of equivalent pixels (same Q). In this manner time averaging can be avoided, and the time-dependent dynamics is quantified by the so-called two-times correlation functions. Higher-order correlation functions may also be calculated to investigate questions related to non-Gaussian dynamics and dynamical heterogeneity. We discuss recent forefront applications of XPCS in the study of soft and hard condensed matter dynamics, including phase-separation dynamics of colloid-polymer mixtures, motion of Au nanoparticles at the air-water interface, dynamics of atoms in metallic crystals and glasses, and domain coarsening in phase-ordering binary alloys.

Journal ArticleDOI
TL;DR: It is found that an increase of the arm length would result in an increase in the density and the isokinetic temperature, but high functionality star polymers have the opposite behavior, but the effect between low and high functionalities is more pronounced for short arm lengths.
Abstract: Structural and dynamical properties of star melts have been investigated with molecular dynamics simulations of a bead-spring model. Star polymers are known to be heterogeneous, but a systematic simulation study of their properties in melt conditions near the glass transition temperature was lacking. To probe their properties, we have expanded from linear to star polymers the applicability of Dobkowski’s chain-length dependence correlation function [Z. Dobkowski, Eur. Polym. J. 18, 563 (1982)]. The density and the isokinetic temperature, based on the canonical definition of the laboratory glass-transition, can be described well by the correlation function and a subtle behavior manifests as the architecture becomes more complex. For linear polymer chains and low functionality star polymers, we find that an increase of the arm length would result in an increase of the density and the isokinetic temperature, but high functionality star polymers have the opposite behavior. The effect between low and high functionalities is more pronounced for short arm lengths. Complementary results such as the specific volume and number of neighbors in contact provide further insights on the subtle relation between structure and dynamics. The findings would be valuable to polymer, colloidal, and nanocomposites fields for the design of materials in absence of solution with the desired properties.

Journal ArticleDOI
TL;DR: In this article, a principal component analysis (PCA) was performed to identify two dominant contributions to the two-particle correlation function, which together capture 99.9% of the squared variance.
Abstract: We perform a principal component analysis (PCA) of ${v}_{3}({p}_{T})$ in event-by-event hydrodynamic simulations of Pb+Pb collisions at the Large Hadron Collider (LHC). The PCA procedure identifies two dominant contributions to the two-particle correlation function, which together capture 99.9% of the squared variance. We find that the subleading flow (which is the largest source of flow factorization breaking in hydrodynamics) is predominantly a response to the radial excitations of a third-order eccentricity. We present a systematic study of the hydrodynamic response to these radial excitations in 2+1D viscous hydrodynamics. Finally, we construct a good geometrical predictor for the orientation angle and magnitude of the leading and subleading flows using two Fourier modes of the initial geometry.

Journal ArticleDOI
TL;DR: In this article, a model for the thermal Sunyaev-Zeldovich (tSZ) effect with weak gravitational lensing is proposed to constrain the extended baryon component.
Abstract: Approximately half of the Universe's baryons are in a form that has been hard to detect directly. However, the missing component can be traced through the cross-correlation of the thermal Sunyaev-Zeldovich (tSZ) effect with weak gravitational lensing. We build a model for this correlation and use it to constrain the extended baryon component, employing data from the Canada France Hawaii Lensing Survey and the Planck satellite. The measured correlation function is consistent with an isothermal β-model for the halo gas pressure profile, and the 1- and 2-halo terms are both detected at the 4σ level. In addition, we measure the hydrostatic mass bias (1−b)=0.79+0.07−0.10, which is consistent with numerical simulation results and the constraints from X-ray observations. The effective temperature of the gas is found to be in the range (7×105–3 ×108) K, with approximately 50% of the baryons appearing to lie beyond the virial radius of the halos, consistent with current expectations for the warm-hot intergalactic medium.

Journal ArticleDOI
TL;DR: In this article, the shape of quadrupole anisotropy in the curvature perturbation power spectrum has been investigated in the Tensor-Scalar Scalar Scalar (TSS) bispectrum.
Abstract: Inflationary models can correlate small-scale density perturbations with the long-wavelength gravitational waves (GW) in the form of the Tensor-Scalar-Scalar (TSS) bispectrum. This correlation affects the mass-distribution in the Universe and leads to the off-diagonal correlations of the density field modes in the form of the quadrupole anisotropy. Interestingly, this effect survives even after the tensor mode decays when it re-enters the horizon, known as the fossil effect. As a result, the off-diagonal correlation function between different Fourier modes of the density fluctuations can be thought as a way to probe the large-scale GW and the mechanism of inflation behind the fossil effect. Models of single field slow roll inflation generically predict a very small quadrupole anisotropy in TSS while in models of multiple fields inflation this effect can be observable. Therefore this large scale quadrupole anisotropy can be thought as a spectroscopy for different inflationary models. In addition, in models of anisotropic inflation there exists quadrupole anisotropy in curvature perturbation power spectrum. Here we consider TSS in models of anisotropic inflation and show that the shape of quadrupole anisotropy is different than in single field models. In fact, in these models, quadrupole anisotropy is projected into the preferred direction and its amplitude is proportional to g* Ne where Ne is the number of e-folds and g* is the amplitude of quadrupole anisotropy in curvature perturbation power spectrum. We use this correlation function to estimate the large scale GW as well as the preferred direction and discuss the detectability of the signal in the galaxy surveys like Euclid and 21 cm surveys.

Journal ArticleDOI
TL;DR: In this article, the authors investigate non-Markovianity measure using two-time correlation functions for open quantum systems and obtain the short-time and long-time behaviors of NMM for different spectral densities.
Abstract: We investigate non-Markovianity measure using two-time correlation functions for open quantum systems. We define non-Markovianity measure as the difference between the exact two-time correlation function and the one obtained from quantum regression theorem in the Born-Markov approximation. Such non-Markovianity can easily be measured in experiments. We found that the non-Markovianity dynamics in different time scale crucially depends on the system-environment coupling strength and other physical parameters such as the initial temperature of the environment and the initial state of the system. In particular, we obtain the short-time and long-time behaviors of non-Markovianity for different spectral densities. We find that the thermal fluctuation always reduce the non-Markovian memory effect. Also, the non-Markovianity measure shows nontrivial initial state dependence in different time scales.

Journal ArticleDOI
TL;DR: In this paper, the authors show that correlation functions of two longwavelength modes with several short-wavelength mode are related to lower order correlation functions, using the background wave method, and independently, by exploiting symmetries of the wave function of the universe.
Abstract: Correlation functions of two long-wavelength modes with several short-wavelength modes are shown to be related to lower order correlation functions, using the background wave method, and independently, by exploiting symmetries of the wavefunction of the Universe. These soft identities follow from the non-linear extension of the adiabatic modes of Weinberg, and their generalization by Hinterbichler et al. The extension is shown to be unique. A few checks of the identities are presented.

Journal ArticleDOI
TL;DR: A dynamic reconstruction procedure that allows one to use a series of auxiliary S2 to achieve the same level of accuracy as those incorporating additional nonconventional correlation functions and can be naturally applied to reconstruct an actual microstructure evolution process.
Abstract: Reconstructing heterogeneous materials from limited structural information has been a topic that attracts extensive research efforts and still poses many challenges. The Yeong-Torquato procedure is one of the most popular reconstruction techniques, in which the material reconstruction problem based on a set of spatial correlation functions is formulated as a constrained energy minimization (optimization) problem and solved using simulated annealing [Yeong and Torquato, Phys. Rev. E 57, 495 (1998)]. The standard two-point correlation function S2 has been widely used in reconstructions, but can also lead to large structural degeneracy for certain nearly percolating systems. To improve reconstruction accuracy and reduce structural degeneracy, one can successively incorporate additional morphological information (e.g., nonconventional or higher-order correlation functions), which amounts to reshaping the energy landscape to create a deep (local) energy minimum. In this paper, we present a dynamic reconstruction procedure that allows one to use a series of auxiliary S2 to achieve the same level of accuracy as those incorporating additional nonconventional correlation functions. In particular, instead of randomly sampling the microstructure space as in the simulated annealing scheme, our procedure utilizes a series of auxiliary microstructures that mimic a physical structural evolution process (e.g., grain growth). This amounts to constructing a series auxiliary energy landscapes that bias the convergence of the reconstruction to a favored (local) energy minimum. Moreover, our dynamic procedure can be naturally applied to reconstruct an actual microstructure evolution process. In contrast to commonly used evolution reconstruction approaches that separately generate individual static configurations, our procedure continuously evolves a single microstructure according to a time-dependent correlation function. The utility of our procedure is illustrated by successfully reconstructing nearly percolating hard-sphere packings and particle-reinforced composites as well as the coarsening process in a binary metallic alloy.

Journal ArticleDOI
TL;DR: In this paper, a temperature measurement of an atomic cloud based on the temporal correlations of fluorescence photons evanescently coupled into an optical nanofiber was developed. But their method is limited to the case of single photons.
Abstract: We develop a temperature measurement of an atomic cloud based on the temporal correlations of fluorescence photons evanescently coupled into an optical nanofiber. We measure the temporal width of the intensity-intensity correlation function due to atomic transit time and use it to determine the most probable atomic velocity, hence the temperature. This technique agrees well with standard time-of-flight temperature measurements. We confirm our results with trajectory simulations.

Journal ArticleDOI
TL;DR: It is shown that the nonunitary Gaffnian state exhibits clear signatures of a pathological behavior and the topological entanglement entropy seems to behave like that of the composite fermion Jain state at equal filling in finite size systems.
Abstract: Using the newly developed matrix product state formalism for non-Abelian fractional quantum Hall (FQH) states, we address the question of whether a FQH trial wave function written as a correlation function in a nonunitary conformal field theory (CFT) can describe the bulk of a gapped FQH phase. We show that the nonunitary Gaffnian state exhibits clear signatures of a pathological behavior. As a benchmark we compute the correlation length of a Moore-Read state and find it to be finite in the thermodynamic limit. By contrast, the Gaffnian state has an infinite correlation length in (at least) the non-Abelian sector, and is therefore gapless. We also compute the topological entanglement entropy of several non-Abelian states with and without quasiholes. For the first time in the FQH effect the results are in excellent agreement in all topological sectors with the CFT prediction for unitary states. For the nonunitary Gaffnian state in finite size systems, the topological entanglement entropy seems to behave like that of the composite fermion Jain state at equal filling.

Journal ArticleDOI
TL;DR: In this article, the authors study the impact of neutrino masses on the shape and height of the BAO peak of the matter correlation function, both in real and redshift space.
Abstract: We study the impact of neutrino masses on the shape and height of the BAO peak of the matter correlation function, both in real and redshift space. In order to describe the nonlinear evolution of the BAO peak we run N-body simulations and compare them with simple analytic formulae. We show that the evolution with redshift of the correlation function and its dependence on the neutrino masses is well reproduced in a simplified version of the Zel'dovich approximation, in which the mode-coupling contribution to the power spectrum is neglected. While in linear theory the BAO peak decreases for increasing neutrino masses, the effect of nonlinear structure formation goes in the opposite direction, since the peak broadening by large scale flows is less effective. As a result of this combined effect, the peak decreases by ~ 0.6 % for ∑ mν = 0.15 eV and increases by ~1.2% for ∑ mν = 0.3 eV, with respect to a massless neutrino cosmology with equal value of the other cosmological parameters. We extend our analysis to redshift space and to halos, and confirm the agreement between simulations and the analytic formulae. We argue that all analytical approaches having the Zel'dovich propagator in their lowest order approximation should give comparable performances, irrespectively to their formulation in Lagrangian or in Eulerian space.

Journal ArticleDOI
TL;DR: In this paper, the authors further explored the μ ˜, q -deformation, namely the version of μ ǫ, q −Bose gas model involving deformed distributions and correlation functions, and explicitly derived the one and two-particle deformed distribution functions and the intercept of twoparticle momentum correlation function.

Journal ArticleDOI
TL;DR: The random Euclidean bipartite matching problem on the hypertorus in d dimensions with quadratic cost is analyzed and the two-point correlation function is derived, using a proper ansatz introduced by Caracciolo et al. to evaluate the average optimal matching cost.
Abstract: We analyze the random Euclidean bipartite matching problem on the hypertorus in $d$ dimensions with quadratic cost and we derive the two-point correlation function for the optimal matching, using a proper ansatz introduced by Caracciolo et al. [Phys. Rev. E 90, 012118 (2014)] to evaluate the average optimal matching cost. We consider both the grid-Poisson matching problem and the Poisson-Poisson matching problem. We also show that the correlation function is strictly related to the Green's function of the Laplace operator on the hypertorus.

Journal ArticleDOI
TL;DR: In this article, a set of techniques to isolate and analyze three-and four-pion correlations of identical bosons is presented, which allows one to more easily study the effects of quantum coherence at finite relative momenta instead of at the unmeasured intercept of correlation functions.
Abstract: The quantum statistics (QS) correlations of identical bosons are well known to be sensitive to the space-time extent and dynamics of the particle emitting source in high-energy collisions. While two-pion correlations are most often experimentally measured, the QS correlations of three pions and higher are rarely explored. A set of techniques to isolate and analyze three- and four-pion QS correlations is presented. In particular, the technique of built correlation functions allows one to more easily study the effects of quantum coherence at finite relative momenta instead of at the unmeasured intercept of correlation functions.

Journal ArticleDOI
TL;DR: In this article, the authors derived an analytical expression for a novel large-scale structure observable: the line correlation function, which is constructed from the three-point correlation function of the phase of the density field, allowing the extraction of information in the nonlinear and non-Gaussian regime.
Abstract: We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the nonlinear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F2, which governs the nonlinear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a 1σ agreement for separations r 30 h−1 Mpc. Fitting formulae for the power spectrum and the nonlinear coupling kernel at small scales allow us to extend our prediction into the strongly nonlinear regime, where we find a 1σ agreement with the simulations for r 2 h−1 Mpc. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the bias, in the regime where the bias is local and linear. Furthermore, the variance of the line correlation is independent of the Gaussian variance on the modulus of the density field. This suggests that the line correlation can probe more precisely the nonlinear regime of gravity, with less contamination from the power spectrum variance.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the properties of a three-dimensional homogeneous dipolar Bose gas in a weak random potential with a Gaussian correlation function at finite temperature.
Abstract: We investigate the properties of a three-dimensional homogeneous dipolar Bose gas in a weak random potential with a Gaussian correlation function at finite temperature. Using the Bogoliubov theory (beyond the mean field), we calculate the superfluid and the condensate fractions in terms of the interaction strength on the one hand and in terms of the width and the strength of the disorder on the other. The influence of the disordered potential on the second order correlation function, the ground state energy and the chemical potential is also analyzed. We find that for fixed strength and correlation length of the disorder potential, the dipole-dipole interaction leads to modify both the condensate and the superfluid fractions. We show that for a strong disorder strength the condensed fraction becomes larger than the superfluid fraction. We discuss the effect of the trapping potential on a disordered dipolar Bose in the regime of large number of particles.

Journal ArticleDOI
TL;DR: In this paper, the authors studied the fluid dynamical evolution of local and event-by-event fluctuations of baryon number density, flow velocity, and energy density on top of a generalized Bjorken expansion.
Abstract: Baryon number density perturbations offer a possible route to experimentally measure baryon number susceptibilities and heat conductivity of the quark gluon plasma. We study the fluid dynamical evolution of local and event-by-event fluctuations of baryon number density, flow velocity, and energy density on top of a (generalized) Bjorken expansion. To that end we use a background-fluctuation splitting and a Bessel-Fourier decomposition for the fluctuating part of the fluid dynamical fields with respect to the azimuthal angle, the radius in the transverse plane, and rapidity. We examine how the time evolution of linear perturbations depends on the equation of state as well as on shear viscosity, bulk viscosity, and heat conductivity for modes with different azimuthal, radial, and rapidity wave numbers. Finally we discuss how this information is accessible to experiments in terms of the transverse and rapidity dependence of correlation functions for baryonic particles in high energy nuclear collisions.

Journal ArticleDOI
TL;DR: It is argued that a four-point correlation length ξ_{4}(t) grows linearly in time in a glass and grows as sqrt[t] at long times in a fluid, and it is shown that in the glass the shear modulus can be obtained from the long-time, small-q limit of S_{4}.
Abstract: We examine correlations of transverse particle displacements and their relationship to the shear modulus of a glass and the viscosity of a fluid. To this end we use computer simulations to calculate a correlation function of the displacements, S_{4}(q;t), which is similar to functions used to study heterogeneous dynamics in glass-forming fluids. We show that in the glass the shear modulus can be obtained from the long-time, small-q limit of S_{4}(q;t). By using scaling arguments, we argue that a four-point correlation length ξ_{4}(t) grows linearly in time in a glass and grows as sqrt[t] at long times in a fluid, and we verify these results by analyzing S_{4}(q;t) obtained from simulations. For a viscoelastic fluid, the simulation results suggest that the crossover to the long-time sqrt[t] growth of ξ_{4}(t) occurs at a characteristic decay time of the shear stress autocorrelation function. Using this observation, we show that the amplitude of the long-time sqrt[t] growth is proportional to sqrt[η] where η is the viscosity of the fluid.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the properties of a three-dimensional homogeneous dipolar Bose gas in a weak random potential with a Gaussian correlation function at finite temperature.
Abstract: We investigate the properties of a three-dimensional homogeneous dipolar Bose gas in a weak random potential with a Gaussian correlation function at finite temperature. Using the Bogoliubov theory (beyond the mean field), we calculate the superfluid and the condensate fractions in terms of the interaction strength on the one hand and in terms of the width and the strength of the disorder on the other. The influence of the disordered potential on the second-order correlation function, the ground state energy, and the chemical potential is also analyzed. We find that for fixed strength and correlation length of the disorder potential, the dipole–dipole interaction leads to modify both the condensate and the superfluid fractions. We show that for a strong disorder strength the condensed fraction becomes larger than the superfluid fraction. We discuss the effect of the trapping potential on a disordered dipolar Bose in the regime of large number of particles.