scispace - formally typeset
Search or ask a question

Showing papers on "Corticosterone published in 2016"


Journal ArticleDOI
TL;DR: Tumor-induced IL-6 impairs the ketogenic response to reduced caloric intake, resulting in a systemic metabolic stress response that blocks anti-cancer immunotherapy.

246 citations


Journal ArticleDOI
TL;DR: Results suggest that anxious- and depressive-like behavior induced by social isolation stress correlates with reduction of several neuroplasticity-related genes in the hippocampus and prefrontal cortex of adult male mice.
Abstract: Stress is a major risk factor in the onset of several neuropsychiatric disorders including anxiety and depression. Although several studies have shown that social isolation stress during postweaning period induces behavioral and brain molecular changes, the effects of social isolation on behavior during adulthood have been less characterized. Aim of this work was to investigate the relationship between the behavioral alterations and brain molecular changes induced by chronic social isolation stress in adult male mice. Plasma corticosterone levels and adrenal glands weight were also analyzed. Socially isolated (SI) mice showed higher locomotor activity, spent less time in the open field center, and displayed higher immobility time in the tail suspension test compared to group-housed (GH) mice. SI mice exhibited reduced plasma corticosterone levels and reduced difference between right and left adrenal glands. SI showed lower mRNA levels of the BDNF-7 splice variant, c-Fos, Arc, and Egr-1 in both hippocampus and prefrontal cortex compared to GH mice. Finally, SI mice exhibited selectively reduced mGluR1 and mGluR2 levels in the prefrontal cortex. Altogether, these results suggest that anxious- and depressive-like behavior induced by social isolation stress correlates with reduction of several neuroplasticity-related genes in the hippocampus and prefrontal cortex of adult male mice.

200 citations


Journal ArticleDOI
TL;DR: There is a strong case for determining multiple parameters of stress in chickens, and close attention needs to be placed on the validity of assays including cross-laboratory standards.

160 citations


Journal ArticleDOI
TL;DR: This review examines the strengths, weaknesses, and unresolved technical issues of the feather corticosterone technique and suggests that this measure complement, not replace, plasma measurements.
Abstract: The recently introduced technique of measuring corticosterone in feathers currently provides the longest-term measure of corticosterone in birds. This review examines the strengths, weaknesses, and unresolved technical issues of the feather corticosterone technique. Feather corticosterone's major strengths are that it provides: a retrospective assessment of corticosterone physiology, including information from absent (unseen) or dead (e.g. museum specimens) individuals; a long-term measure of corticosterone exposure over the period of feather growth (days-weeks), integrating both baseline and responses to stressors; and flexible, minimally-invasive, sampling. However, researchers considering this technique should be aware of its limitations. Feather corticosterone only reflects hormone exposure during feather growth and, when sampling during molt, corticosterone titers and ecological conditions may not be representative of the majority of the annual cycle. Synchronization of molt is often unknown for a population, requiring assumptions when making inter-individual comparisons. Additionally, unresolved technical issues include: assessing whether corticosterone is the only hormone measured by assays; determining deposition dynamics to fully understand connections between feather and plasma corticosterone titers; studying the longevity and stability of corticosterone in the feather; establishing the impact of feather size and color on corticosterone deposition; and understanding the causes and implications of corticosterone variation along the length of the feather. Notwithstanding the above limitations and technical challenges, determining corticosterone titers in feathers is proving to be a useful technique for exploring some ecological and physiological correlates in individual birds. Given the unique perspective that feather corticosterone offers, we suggest that this measure complement, not replace, plasma measurements.

107 citations


Journal ArticleDOI
TL;DR: It is found that forced treadmill running induced a stress response, with increased anxiety in the Open Field test and increased levels of corticosterone, which indicates that exercise pre-conditioning may not be beneficial if the animals are forced to run as it can induce a detrimental stress response.

98 citations


Journal ArticleDOI
TL;DR: Social isolation affects neuroendocrine reactivity to stress, plasticity and emotionality in a sexually dimorphic manner, and chronic stress associated with social isolation impairs feedback inhibition in both sexes.

85 citations


Journal ArticleDOI
TL;DR: The present results reinforce the participation of Nrf2 in the antidepressant-like effect produced by agmatine and expand literature data concerning its mechanisms of action.
Abstract: Agmatine, an endogenous neuromodulator, is a potential candidate to constitute an adjuvant/monotherapy for the management of depression. A recent study by our group demonstrated that agmatine induces Nrf2 and protects against corticosterone effects in a hippocampal neuronal cell line. The present study is an extension of this previous study by assessing the antidepressant-like effect of agmatine in an animal model of depression induced by corticosterone in mice. Swiss mice were treated simultaneously with agmatine or imipramine at a dose of 0.1 mg/kg/day (p.o.) and corticosterone for 21 days and the daily administrations of experimental drugs were given immediately prior to corticosterone (20 mg/kg/day, p.o.) administrations. Wild-type C57BL/6 mice (Nrf2 (+/+)) and Nrf2 KO (Nrf2 (−/−)) were treated during 21 days with agmatine (0.1 mg/kg/day, p.o.) or vehicle. Twenty-four hours after the last treatments, the behavioral tests and biochemical assays were performed. Agmatine treatment for 21 days was able to abolish the corticosterone-induced depressive-like behavior and the alterations in the immunocontent of mature BDNF and synaptotagmin I, and in the serotonin and glutamate levels. Agmatine also abolished the corticosterone-induced changes in the morphology of astrocytes and microglia in CA1 region of hippocampus. In addition, agmatine treatment in control mice increased noradrenaline, serotonin, and dopamine levels, CREB phosphorylation, mature BDNF and synaptotagmin I immunocontents, and reduced pro-BDNF immunocontent in the hippocampus. Agmatine’s ability to produce an antidepressant-like effect was abolished in Nrf2 (−/−) mice. The present results reinforce the participation of Nrf2 in the antidepressant-like effect produced by agmatine and expand literature data concerning its mechanisms of action.

83 citations


Journal ArticleDOI
Lian-Jin Weng1, Xiaohua Guo1, Yang Li1, Xin Yang1, Yuanyuan Han1 
TL;DR: The behavioral tests indicated that apigenin reversed the reduction of sucrose preference and the elevation of immobility time in mice induced by chronic corticosterone treatment, and indicated that the antidepressant-like mechanism of Apigenin was mediated, at least partly by up-regulation of BDNF levels in the hippocampus.

69 citations


Journal ArticleDOI
TL;DR: Comparing the effects of different housing conditions and an automated home‐cage system with indirect calorimetry located in an environmental chamber on corticosterone levels in mice concluded that single housing caused less stress when compared with group‐housed mice.
Abstract: Mice are used extensively in physiological research. Automated home‐cage systems have been developed to study single‐housed animals. Increased stress by different housing conditions might affect greatly the results when investigating metabolic responses. Urinary corticosteroid concentration is considered as a stress marker. The aim of the study was to compare the effects of different housing conditions and an automated home‐cage system with indirect calorimetry located in an environmental chamber on corticosterone levels in mice. Male mice were housed in different conditions and in automated home‐cage system to evaluate the effects of housing and measuring conditions on urine corticosterone levels. Corticosterone levels in single‐housed mice in the laboratory animal center were consistently lower compared with the group‐housed mice. Single‐housed mice in a separate, small animal unit showed a rise in their corticosterone levels a day after they were separated to their individual cages, which decreased during the following 2 days. The corticosterone levels of group‐housed mice in the same unit were increased during the first 7 days and then decreased. On day 7, the corticosterone concentrations of group‐housed mice were significantly higher compared with that of single‐housed mice, including the metabolic measurement protocol. In conclusion, single housing caused less stress when compared with group‐housed mice. In addition, the urine corticosterone levels were decreased in single‐housed mice before the metabolic measurement started. Thus, stress does not affect the results when utilizing the automated system for measuring metabolic parameters like food and water intake and calorimetry.

66 citations


Journal ArticleDOI
TL;DR: mSPS models characteristics relevant to PTSD and this severe, multimodal stress modifies fear learning in mice that coincides with changes in the hypothalamo-pituitary-adrenal (HPA) axis, brain glucocorticoid systems, and glutamatergic signaling in the cortex.

63 citations


Journal ArticleDOI
Jingjing Le1, Tao Yi1, Li Qi2, Ji Li1, Lei Shao1, Jingcheng Dong1 
TL;DR: Investigation of the antidepressant-like effect and mechanism of EA for depression rat models indicated that EA treatment could act on depression by modulating HPA axis and enhancing hippocampal 5-HT/5-HT1AR in CUMS Rats.

Journal ArticleDOI
10 Oct 2016-PLOS ONE
TL;DR: Bayesian modeling strongly supported the age-dependent development of synaptic plasticity in the CA1 hippocampus, with some evidence for accelerated maturation after MD in males and some support for the notion that maturation is accelerated in MD males.
Abstract: INTRODUCTION Early life stress (ELS) increases the risk for developing psychopathology in adulthood. When these effects occur is largely unknown. We here studied at which time during development ELS affects hippocampal synaptic plasticity, from early life to adulthood, in a rodent ELS model. Moreover, we investigated whether the sensitivity of synaptic plasticity to the stress-hormone corticosterone is altered by exposure to ELS. MATERIALS & METHODS Male and female Wistar rats were exposed to maternal deprivation (MD) for 24h on postnatal day (P)3 or left undisturbed with their mother (control). On P8-9, 22-24 and P85-95, plasma corticosterone (CORT) levels, body weight, and thymus and adrenal weights were determined to validate the neuroendocrine effects of MD. Field potentials in the CA1 hippocampus were recorded in vitro before and after high frequency stimulation. Brain slices were incubated for 20 min with 100nM CORT or vehicle 1-4h prior to high frequency stimulation, to mimic high-stress conditions in vitro. RESULTS & DISCUSSION Body weight was decreased by MD only at P4 (p = 0.02). There were minimal effects on P8-9, 22-24 or 85-95 thymus and adrenal weight and basal CORT levels. Glutamate transmission underwent strong developmental changes: half-maximal signal size strongly increased (p<0.0001) while the required half-maximal stimulation intensity concomitantly decreased with age (p = 0.04). Synaptic plasticity developed from long-term depression at P8-9 to increasing levels of long-term potentiation at later ages (p = 0.0001). MD caused a significant increase in long-term potentiation of P22-24 males (p = 0.03) and P85-95 females (p = 0.04). Bayesian modeling strongly supported the age-dependent development, with some evidence for accelerated maturation after MD in males (Bayes factor 1.23). CORT suppressed LTP in adult males; synaptic plasticity at other ages and in females remained unaffected. Thus, MD affects the development of synaptic plasticity in the CA1 hippocampus in a sex-dependent manner, with some support for the notion that maturation is accelerated in MD males.

Journal ArticleDOI
TL;DR: The recently reported role of 11β-HSD in the skin is summarized, focusing on its function in cell proliferation, wound healing, inflammation, and aging.

Journal ArticleDOI
TL;DR: Experimental findings indicate that silymarin exhibits antidepressant like activity probably either through alleviating oxidative stress by modulation of corticosterone response, and antioxidant defense system in hippocampus and cerebral cortex in ARS mice.

Journal ArticleDOI
TL;DR: Data show that gestational CPS induced long-term effects on the offspring circadian system, wherein a normal SCN coexists with altered endocrine, cardiovascular, and metabolic function.
Abstract: Chronic exposure to light at night, as in shift work, alters biological clocks (chronodisruption), negatively impacting pregnancy outcome in humans. Actually the interaction of maternal and fetal circadian systems could be a key factor determining a fitting health in adults. We propose that chronic photoperiod shift (CPS) during pregnancy alter maternal circadian rhythms and impair circadian physiology in the adult offspring, increasing health risks. Pregnant rats were exposed to normal photoperiod (12 h light, 12 h dark) or to CPS until 85% of gestation. The effects of gestational CPS were evaluated on the mother and adult offspring. In the mother we measured rhythms of heart rate, body temperature, and activity through gestation and daily rhythms of plasma variables (melatonin, corticosterone, aldosterone, and markers of renal function) at 18 days of gestation. In adult offspring, we measured rhythms of the clock gene expression in the suprachiasmatic nucleus (SCN), locomotor activity, body temperature, heart rate, blood pressure, plasma variables, glucose tolerance, and corticosterone response to ACTH. CPS altered all maternal circadian rhythms, lengthened gestation, and increased newborn weight. The adult CPS offspring presented normal rhythms of clock gene expression in the SCN, locomotor activity, and body temperature. However, the daily rhythm of plasma melatonin was absent, and corticosterone, aldosterone, renal markers, blood pressure, and heart rate rhythms were altered. Moreover, CPS offspring presented decreased glucose tolerance and an abnormal corticosterone response to ACTH. Altogether these data show that gestational CPS induced long-term effects on the offspring circadian system, wherein a normal SCN coexists with altered endocrine, cardiovascular, and metabolic function.

Journal ArticleDOI
TL;DR: The CORT-Flexibility Hypothesis is grounded on a solid foundation of research showing seasonal variation in the physiological stress response and knowledge of physiological mechanisms modulating corticosteroid effects, and six possible corticosterone-driven mechanisms in pre-breeding birds that may delay breeding initiation are proposed.

Journal ArticleDOI
TL;DR: The results support involvement of endogenous glucocorticoids in ozone-induced inflammatory and metabolic effects, providing insight into potential biological mechanisms underlying health impacts and susceptibility.

Journal ArticleDOI
TL;DR: The results suggest that EESC produces an antidepressant-like effect in CORT-induced depression in mice, which is possibly mediated, at least in part, by rectifying the stress-based hypothalamic-pituitary-adrenal (HPA) axis dysfunction paradigm and upregulation of BDNF/TrkB/CREB signaling pathway.
Abstract: The present study aimed to examine the antidepressant-like effects and the possible mechanisms of Schisandra chinensis on depressive-like behavior induced by repeated corticosterone injections in mice. Here we evaluated the effect of an ethanol extract of the dried fruit of S. chinensis (EESC) on BDNF/TrkB/CREB signaling in the hippocampus and the prefrontal cortex. Three weeks of corticosterone injections in mice resulted in depressive-like behavior, as indicated by the significant decrease in sucrose consumption and increase the immobility time in the forced swim test, but without any influence on the locomotor activity. Further, there was a significant increase in serum corticosterone level and a significant downregulation of BDNF/TrkB/CREB signaling pathway in the hippocampus and prefrontal cortex in CORT-treated mice. Treatment of mice with EESC (600mg/kg) significantly ameliorated all the behavioral and biochemical changes induced by corticosterone. Moreover, pharmacological inhibition of BDNF signaling by K252a abolished entirely the antidepressant-like effect triggered by chronic EESC treatment. These results suggest that EESC produces an antidepressant-like effect in CORT-induced depression in mice, which is possibly mediated, at least in part, by rectifying the stress-based hypothalamic-pituitary-adrenal (HPA) axis dysfunction paradigm and upregulation of BDNF/TrkB/CREB signaling pathway.

Journal ArticleDOI
TL;DR: CVS does not suppress rapid glucocorticoid negative feedback at the hypothalamus or pituitary, but increases the synaptic excitability of paraventricular nucleus CRH neurons and the CRH sensitivity of the pituitaries.
Abstract: Stress activation of the hypothalamic-pituitary-adrenal (HPA) axis is regulated by rapid glucocorticoid negative feedback. Chronic unpredictable stress animal models recapitulate certain aspects of major depression in humans, which have been attributed to impaired glucocorticoid negative feedback. We tested for an attenuated HPA sensitivity to fast glucocorticoid feedback inhibition in male rats exposed to a chronic variable stress (CVS) paradigm. In vitro, parvocellular neuroendocrine cells of the hypothalamic paraventricular nucleus recorded in slices from CVS rats showed an increase in basal excitatory synaptic inputs and a decrease in basal inhibitory synaptic inputs compared with neurons from control rats. There was no difference between control and CVS-treated rats in the rapid glucocorticoid suppression of excitatory synaptic inputs, a fast feedback mechanism. In vivo, CVS-treated rats showed an increase in ACTH secretion at baseline and after both iv CRH and acute stress and no impairment of the corticosterone suppression of the ACTH response, compared with controls. In an in vitro pituitary preparation, an increase in basal ACTH release, a small increase in CRH-induced ACTH release, and no decrement in the glucocorticoid suppression of ACTH release were seen in pituitaries from CVS rats. Thus, CVS does not suppress rapid glucocorticoid negative feedback at the hypothalamus or pituitary, but increases the synaptic excitability of paraventricular nucleus CRH neurons and the CRH sensitivity of the pituitary. Therefore, increased HPA activity in chronically stressed male rats is due to sensitization of the HPA axis, rather than to desensitization to rapid glucocorticoid feedback.

Journal ArticleDOI
01 Jul 2016
TL;DR: The data suggest that short-term HFD consumption increases vulnerability to memory disruptions caused by an immune challenge by upregulating important neuroinflammatory priming and danger signals in the hippocampus, and that these effects are mediated by increases in hippocampal corticosterone.
Abstract: The impact of the foods we eat on metabolism and cardiac physiology has been studied for decades, yet less is known about the effects of foods on the CNS, or the behavioral manifestations that may result from these effects. Previous studies have shown that long-term consumption of high-fat foods leading to diet-induced obesity sensitizes the inflammatory response of the brain to subsequent challenging stimuli, causing deficits in the formation of long-term memories. The new findings reported here demonstrate that short-term consumption of a high-fat diet (HFD) produces the same outcomes, thus allowing the examination of mechanisms involved in this process long before obesity and associated comorbidities occur. Rats fed an HFD for 3 d exhibited increases in corticosterone, the inflammasome-associated protein NLRP3 (nod-like receptor protein 3), and the endogenous danger signal HMGB1 (high-mobility group box 1) in the hippocampus. A low-dose (10 μg/kg) lipopolysaccharide (LPS) immune challenge potentiated the neuroinflammatory response in the hippocampus of rats fed the HFD, and caused a deficit in the formation of long-term memory, effects not observed in rats fed regular chow. The blockade of corticosterone action with the glucocorticoid receptor antagonist mifepristone prevented the NLRP3 and HMGB1 increases in unchallenged animals, normalized the proinflammatory response to LPS, and prevented the memory impairment. These data suggest that short-term HFD consumption increases vulnerability to memory disruptions caused by an immune challenge by upregulating important neuroinflammatory priming and danger signals in the hippocampus, and that these effects are mediated by increases in hippocampal corticosterone.

Journal ArticleDOI
TL;DR: In this paper, the effects of neonatal proinflammatory stress on the development of anxiety and depressive-like behavior, stress responsiveness, hippocampal plasticity and conditioned fear response were studied in adolescent and adult male Wistar rats.

Journal ArticleDOI
TL;DR: Data indicate that increased sympathetic nervous system tone contributes to elevated basal and rapid glucocorticoid production following chronic stress, but HPA responses likely mediate peak corticosterone responses to stressors of longer duration.

Journal ArticleDOI
TL;DR: Diurnal variations in GLP-1 and insulin nutrient-induced responses were maintained in animals lacking an endogenous corticosterone rhythm, suggesting that glucocorticoids are not the predominant entrainment factor for L-cell rhythmic activity.
Abstract: Secretion of the incretin hormone, glucagon-like peptide-1 (GLP-1), by the intestinal L-cell is rhythmically regulated by an independent molecular clock. However, the impact of factors known to affect the activity of similar cell-autonomous clocks, such as circulating glucocorticoids and high-fat feeding, on GLP-1 secretory patterns remains to be elucidated. Herein the role of the endogenous corticosterone rhythm on the pattern of GLP-1 and insulin nutrient-induced responses was examined in corticosterone pellet-implanted rats. Moreover, the impact of nutrient excess on the time-dependent secretion of both hormones was assessed in rats fed a high-fat, high-sucrose diet. Finally, the effects of the saturated fatty acid, palmitate, on the L-cell molecular clock and GLP-1 secretion were investigated in vitro using murine GLUTag L-cells. Diurnal variations in GLP-1 and insulin nutrient-induced responses were maintained in animals lacking an endogenous corticosterone rhythm, suggesting that glucocorticoids are not the predominant entrainment factor for L-cell rhythmic activity. In addition to hyperglycemia, hyperinsulinemia, insulin resistance, and disorganization of feeding behavior, high-fat high-sucrose-fed rats showed a total abrogation of the diurnal variation in GLP-1 and insulin nutrient-induced responses, with comparable levels of both hormones at the normal peak (5:00 pm) and trough (5:00 am) of their daily pattern. Finally, palmitate incubation induced profound derangements in the rhythmic expression of circadian oscillators in GLUTag L-cells and severely impaired the secretory activity of these cells. Collectively our findings demonstrate that obesogenic diets disrupt the rhythmic activity of the L-cell, partially through a direct effect of specific nutritional components.

Journal ArticleDOI
TL;DR: This study aims to compare the effects of ∼40mg/kg given either via subcutaneous injection, through an implanted pellet, or in the drinking water, for ∼21days on CORT serum levels, depressive-like behavior in the forced swim test (FST), and neurogenesis levels in the dentate gyrus (DG) in adult female rats.

Journal ArticleDOI
TL;DR: The findings show that stress may affect memory processes beyond the hippocampus and that these stress effects are due to the action of glucocorticoids.

Journal ArticleDOI
TL;DR: It is shown that inducing A2AR overexpression in an aging-like profile is sufficient to trigger HPA-axis dysfunction, namely loss of plasmatic corticosterone circadian oscillation, and promotes reduction of GR hippocampal levels, the first demonstration that A2 AR is a major regulator of GR function and that this functional interconnection may be a trigger to age-related memory deficits.
Abstract: Caffeine is associated with procognitive effects in humans by counteracting overactivation of the adenosine A2A receptor (A2AR), which is upregulated in the human forebrain of aged and Alzheimer's disease (AD) patients. We have previously shown that an anti-A2AR therapy reverts age-like memory deficits, by reestablishment of the hypothalamic-pituitary-adrenal (HPA) axis feedback and corticosterone circadian levels. These observations suggest that A2AR over-activation and glucocorticoid dysfunction are key events in age-related hippocampal deficits; but their direct connection has never been explored. We now show that inducing A2AR overexpression in an aging-like profile is sufficient to trigger HPA-axis dysfunction, namely loss of plasmatic corticosterone circadian oscillation, and promotes reduction of GR hippocampal levels. The synaptic plasticity and memory deficits triggered by GR in the hippocampus are amplified by A2AR over-activation and were rescued by anti-A2AR therapy; finally, we demonstrate that A2AR act on GR nuclear translocation and GR-dependent transcriptional regulation. We provide the first demonstration that A2AR is a major regulator of GR function and that this functional interconnection may be a trigger to age-related memory deficits. This supports the idea that the procognitive effects of A2AR antagonists, namely caffeine, on Alzheimer's and age-related cognitive impairments may rely on its ability to modulate GR actions.

Journal ArticleDOI
TL;DR: Testing the hypothesis that a single moderate diffuse TBI results in chronic dysfunction of corticosterone (CORT), a glucocorticoid released in response to stress and testosterone, provides evidence that asingle moderate TBI leads to changes in CORT function, which can contribute to the persistence of symptoms related to endocrine dysfunction.
Abstract: As many as 20-55% of patients with a history of traumatic brain injury (TBI) experience chronic endocrine dysfunction, leading to impaired quality of life, impaired rehabilitation efforts and lowered life expectancy. Endocrine dysfunction after TBI is thought to result from acceleration-deceleration forces to the brain within the skull, creating enduring hypothalamic and pituitary neuropathology, and subsequent hypothalamic-pituitary endocrine (HPE) dysfunction. These experiments were designed to test the hypothesis that a single diffuse TBI results in chronic dysfunction of corticosterone (CORT), a glucocorticoid released in response to stress and testosterone. We used a rodent model of diffuse TBI induced by midline fluid percussion injury (mFPI). At 2months postinjury compared with uninjured control animals, circulating levels of CORT were evaluated at rest, under restraint stress and in response to dexamethasone, a synthetic glucocorticoid commonly used to test HPE axis regulation. Testosterone was evaluated at rest. Further, we assessed changes in injury-induced neuron morphology (Golgi stain), neuropathology (silver stain) and activated astrocytes (GFAP) in the paraventricular nucleus (PVN) of the hypothalamus. Resting plasma CORT levels were decreased at 2months postinjury and there was a blunted CORT increase in response to restraint induced stress. No changes in testosterone were measured. These changes in CORT were observed concomitantly with altered complexity of neuron processes in the PVN over time, devoid of neuropathology or astrocytosis. Results provide evidence that a single moderate diffuse TBI leads to changes in CORT function, which can contribute to the persistence of symptoms related to endocrine dysfunction. Future experiments aim to evaluate additional HP-related hormones and endocrine circuit pathology following diffuse TBI.

Journal ArticleDOI
TL;DR: Data indicate that corticosterone may be a metabolically favorable alternative to cortisol for glucocorticoid replacement therapy when ACTH suppression is desirable, as in congenital adrenal hyperplasia, and justify development of a pharmaceutical preparation.
Abstract: The aim of treatment in congenital adrenal hyperplasia is to suppress excess adrenal androgens while achieving physiological glucocorticoid replacement. However, current glucocorticoid replacement regimes are inadequate because doses sufficient to suppress excess androgens almost invariably induce adverse metabolic effects. Although both cortisol and corticosterone are glucocorticoids that circulate in human plasma, any physiological role for corticosterone has been neglected. In the brain, the adenosine 5'-triphosphate-binding cassette transporter ABCB1 exports cortisol but not corticosterone. Conversely, ABCC1 exports corticosterone but not cortisol. We show that ABCC1, but not ABCB1, is expressed in human adipose and that ABCC1 inhibition increases intracellular corticosterone, but not cortisol, and induces glucocorticoid-responsive gene transcription in human adipocytes. Both C57Bl/6 mice treated with the ABCC1 inhibitor probenecid and FVB mice with deletion of Abcc1 accumulated more corticosterone than cortisol in adipose after adrenalectomy and corticosteroid infusion. This accumulation was sufficient to increase glucocorticoid-responsive adipose transcript expression. In human adipose tissue, tissue corticosterone concentrations were consistently low, and ABCC1 mRNA was up-regulated in obesity. To test the hypothesis that corticosterone effectively suppresses adrenocorticotropic hormone (ACTH) without the metabolic adverse effects of cortisol, we infused cortisol or corticosterone in patients with Addison's disease. ACTH suppression was similar, but subcutaneous adipose transcripts of glucocorticoid-responsive genes were higher after infusion with cortisol rather than with corticosterone. These data indicate that corticosterone may be a metabolically favorable alternative to cortisol for glucocorticoid replacement therapy when ACTH suppression is desirable, as in congenital adrenal hyperplasia, and justify development of a pharmaceutical preparation.

Journal ArticleDOI
TL;DR: The findings confirmed the antidepressant-like effect of berberine and suggested its mechanisms might be partially mediated by up-regulation of BDNF in hippocampus.

Journal ArticleDOI
TL;DR: Exposure to TBT is critically responsible for the improper function of the mammalian HPA axis as well as the development of abnormal morphophysiology in the pituitary and adrenal glands, and in vivo evidence that TBT leads to functional dissociation between CRH, ACTH, and costicosterone is provided.
Abstract: Tributyltin chloride (TBT) is an environmental contaminant that is used as a biocide in antifouling paints. TBT has been shown to induce endocrine-disrupting effects. However, studies evaluating the effects of TBT on the hypothalamus-pituitary-adrenal (HPA) axis are especially rare. The current study demonstrates that exposure to TBT is critically responsible for the improper function of the mammalian HPA axis as well as the development of abnormal morphophysiology in the pituitary and adrenal glands. Female rats were treated with TBT, and their HPA axis morphophysiology was assessed. High CRH and low ACTH expression and high plasma corticosterone levels were detected in TBT rats. In addition, TBT leads to an increased in the inducible nitric oxide synthase protein expression in the hypothalamus of TBT rats. Morphophysiological abnormalities, including increases in inflammation, a disrupted cellular redox balance, apoptosis, and collagen deposition in the pituitary and adrenal glands, were observed in TBT rats. Increases in adiposity and peroxisome proliferator-activated receptor-γ protein expression in the adrenal gland were observed in TBT rats. Together, these data provide in vivo evidence that TBT leads to functional dissociation between CRH, ACTH, and costicosterone, which could be associated an inflammation and increased of inducible nitric oxide synthase expression in hypothalamus. Thus, TBT exerts toxic effects at different levels on the HPA axis function.