scispace - formally typeset
Search or ask a question
Topic

Cosmology

About: Cosmology is a research topic. Over the lifetime, 18004 publications have been published within this topic receiving 631028 citations. The topic is also known as: physical cosmology & cosmologies.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present cosmological constraints from a cosmic shear analysis of the fourth data release of the Kilo-Degree Survey (KiDS-1000), doubling the survey area with nine-band optical and near-infrared photometry with respect to previous KiDS analyses.
Abstract: We present cosmological constraints from a cosmic shear analysis of the fourth data release of the Kilo-Degree Survey (KiDS-1000), doubling the survey area with nine-band optical and near-infrared photometry with respect to previous KiDS analyses. Adopting a spatially flat $\Lambda$CDM model, we find $S_8 = \sigma_8 (\Omega_{\rm m}/0.3)^{0.5} = 0.759^{+0.024}_{-0.021}$ for our fiducial analysis, which is in $3\sigma$ tension with the prediction of the Planck Legacy analysis of the cosmic microwave background. We compare our fiducial COSEBIs (Complete Orthogonal Sets of E/B-Integrals) analysis with complementary analyses of the two-point shear correlation function and band power spectra, finding results to be in excellent agreement. We investigate the sensitivity of all three statistics to a number of measurement, astrophysical, and modelling systematics, finding our $S_8$ constraints to be robust and dominated by statistical errors. Our cosmological analysis of different divisions of the data pass the Bayesian internal consistency tests, with the exception of the second tomographic bin. As this bin encompasses low redshift galaxies, carrying insignificant levels of cosmological information, we find that our results are unchanged by the inclusion or exclusion of this sample.

198 citations

Journal ArticleDOI
L. F. Abbott1
TL;DR: In this paper, a mechanism is presented for relaxing an initially large, positive cosmological constant to a value near zero by introducing a scalar field whose vacuum energy compensates for the initial cosmology constant.

198 citations

Journal ArticleDOI
TL;DR: In this article, the authors consider the most general primordial cosmological perturbation in a universe filled with photons, baryons, neutrinos, and a hypothetical cold dark matter component within the framework of linearized perturbations theory.
Abstract: We consider the most general primordial cosmological perturbation in a universe filled with photons, baryons, neutrinos, and a hypothetical cold dark matter (CDM) component within the framework of linearized perturbation theory. We present a careful discussion of the different allowed modes, distinguishing modes which are regular at early times, singular at early times, or pure gauge. As well as the familiar growing and decaying adiabatic modes and the baryonic and CDM isocurvature modes, we identify two neutrino isocurvature modes. In the first, the ratio of neutrinos to photons varies spatially but the net density perturbation vanishes. In the second the photon-baryon plasma and the neutrino fluid have a spatially varying relative bulk velocity balanced so that the net momentum density vanishes. Possible mechanisms which could generate the two neutrino isocurvature modes are discussed. If one allows the most general regular primordial perturbation, all quadratic correlators of observables such as the microwave background anisotropy and matter perturbations are completely determined by a $5\ifmmode\times\else\texttimes\fi{}5,$ real, symmetric matrix-valued function of comoving wave number. In a companion paper we examine prospects for detecting or constraining the amplitudes of the most general allowed regular perturbations using present and future CMB data.

198 citations

Journal ArticleDOI
TL;DR: In this paper, general features of β-function equations for spatially flat, (d+ 1)-dimensional cosmological backgrounds at lowest order in the string-loop expansion, but to all orders in α′, are discussed.

198 citations


Network Information
Related Topics (5)
Black hole
40.9K papers, 1.5M citations
95% related
Dark matter
41.5K papers, 1.5M citations
94% related
Redshift
33.9K papers, 1.6M citations
92% related
Luminosity
26.3K papers, 1.1M citations
91% related
Galaxy
109.9K papers, 4.7M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023768
20221,518
2021737
2020784
2019782