scispace - formally typeset
Search or ask a question
Topic

Cosmology

About: Cosmology is a research topic. Over the lifetime, 18004 publications have been published within this topic receiving 631028 citations. The topic is also known as: physical cosmology & cosmologies.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effects of f(R) modified gravity can be separated into a large-and small-field limit, where the effects on the abundance, bias, and profiles of halos in cosmological simulations are studied.
Abstract: The statistical properties of dark matter halos, the building blocks of cosmological observables associated with structure in the Universe, offer many opportunities to test models for cosmic acceleration, especially those that seek to modify gravitational forces. We study the abundance, bias, and profiles of halos in cosmological simulations for one such model: the modified action f(R) theory. The effects of f(R) modified gravity can be separated into a large- and small-field limit. In the large-field limit, which is accessible to current observations, enhanced gravitational forces raise the abundance of rare massive halos and decrease their bias but leave their (lensing) mass profiles largely unchanged. This regime is well described by scaling relations based on a modification of spherical collapse calculations. In the small-field limit, the enhancement of the gravitational force is suppressed inside halos and the effects on halo properties are substantially reduced for the most massive halos. Nonetheless, the scaling relations still retain limited applicability for the purpose of establishing conservative upper limits on the modification to gravity.

287 citations

Journal ArticleDOI
TL;DR: In this paper, a correspondence between the holographic dark energy density and Chaplygin gas energy density in FRW universe is considered. And the potential and the dynamics of the scalar field are reconstructed.

287 citations

Journal ArticleDOI
Simone Aiola, Erminia Calabrese, Loïc Maurin, Sigurd Naess, Benjamin L. Schmitt, Maximilian H. Abitbol, Graeme E. Addison, Peter A. R. Ade, David Alonso, Mandana Amiri, Stefania Amodeo, Elio Angile, Jason E. Austermann, Taylor Baildon, Nick Battaglia, James A. Beall, Rachel Bean, Daniel T. Becker, J. Richard Bond, Sarah Marie Bruno, Victoria Calafut, Luis E. Campusano, Felipe Carrero, Grace E. Chesmore, Hsiao-Mei Cho, Steve K. Choi, Susan E. Clark, Nicholas F. Cothard, Devin Crichton, Kevin T. Crowley, Omar Darwish, Rahul Datta, Edward V. Denison, Mark J. Devlin, Cody J. Duell, Shannon M. Duff, Adriaan J. Duivenvoorden, Jo Dunkley, Rolando Dünner, Thomas Essinger-Hileman, Max Fankhanel, Simone Ferraro, Anna E. Fox, Brittany Fuzia, Patricio A. Gallardo, Vera Gluscevic, Joseph E. Golec, E. Grace, Megan Gralla, Yilun Guan, Kirsten Hall, Mark Halpern, Dongwon Han, Peter Charles Hargrave, Matthew Hasselfield, Jakob M. Helton, Shawn W. Henderson, Brandon S. Hensley, J. Colin Hill, Gene C. Hilton, Matt Hilton, Adam D. Hincks, Renée Hložek, Shuay-Pwu Patty Ho, Johannes Hubmayr, Kevin M. Huffenberger, John P. Hughes, Leopoldo Infante, Kent D. Irwin, Rebecca Jackson, Jacob Klein, Kenda Knowles, Brian J. Koopman, Arthur Kosowsky, Vincent Lakey, Dale Li, Yaqiong Li, Zack Li, Martine Lokken, Thibaut Louis, Marius Lungu, Amanda MacInnis, Mathew S. Madhavacheril, Felipe Maldonado, Maya Mallaby-Kay, Danica Marsden, Jeff McMahon, Felipe Menanteau, Kavilan Moodley, Timothy D. Morton, Toshiya Namikawa, Federico Nati, Laura Newburgh, John P. Nibarger, Andrina Nicola, Michael D. Niemack, Michael R. Nolta, John Orlowski-Sherer, Lyman A. Page, Christine G. Pappas, Bruce Partridge, Phumlani Phakathi, Heather Prince, Roberto Puddu, Frank J. Qu, Jesus Rivera, Naomi Robertson, Felipe Rojas, Maria Salatino, Emmanuel Schaan, Alessandro Schillaci, Neelima Sehgal, Blake D. Sherwin, Carlos Sierra, Jon Sievers, Cristóbal Sifón, Precious Sikhosana, Sara M. Simon, David N. Spergel, Suzanne T. Staggs, Jamie Stevens, Emilie Storer, Dhaneshwar D. Sunder, Eric R. Switzer, B. Thorne, Robert Thornton, Hy Trac, Jesse Treu, Carole Tucker, Leila R. Vale, Alexander van Engelen, Jeff Van Lanen, Eve M. Vavagiakis, Kasey Wagoner, Yuhan Wang, Jonathan T. Ward, Edward J. Wollack, Zhilei Xu, Fernando Zago, Ningfeng Zhu 
TL;DR: In this paper, the Atacama Cosmology Telescope (ACT) data were used to obtain arcminute-resolution maps of the cosmic microwave background temperature and polarization anisotropy.
Abstract: We present new arcminute-resolution maps of the Cosmic Microwave Background temperature and polarization anisotropy from the Atacama Cosmology Telescope, using data taken from 2013-2016 at 98 and 150 GHz. The maps cover more than 17,000 deg$^2$, the deepest 600 deg$^2$ with noise levels below $10$ $\mu$K-arcmin. We use the power spectrum derived from almost 6,000 deg$^2$ of these maps to constrain cosmology. The ACT data enable a measurement of the angular scale of features in both the divergence-like polarization and the temperature anisotropy, tracing both the velocity and density at last-scattering. From these one can derive the distance to the last-scattering surface and thus infer the local expansion rate, $H_0$. By combining ACT data with large-scale information from WMAP we measure $H_0=67.6\pm 1.1$ km/s/Mpc, at 68% confidence, in excellent agreement with the independently-measured Planck satellite estimate (from ACT alone we find $H_0=67.9\pm 1.5$ km/s/Mpc). The $\Lambda$CDM model provides a good fit to the ACT data, and we find no evidence for deviations: both the spatial curvature, and the departure from the standard lensing signal in the spectrum, are zero to within 1$\sigma$; the number of relativistic species, the primordial Helium fraction, and the running of the spectral index are consistent with $\Lambda$CDM predictions to within 1.5-2$\sigma$. We compare ACT, WMAP, and Planck at the parameter level and find good consistency; we investigate how the constraints on the correlated spectral index and baryon density parameters readjust when adding CMB large-scale information that ACT does not measure. The DR4 products presented here will be publicly released on the NASA Legacy Archive for Microwave Background Data Analysis.

287 citations

Journal ArticleDOI
TL;DR: In this article, the authors consider two broad classes of interacting models where the energy exchange is a linear combination of the dark sector densities, and give general conditions on the parameters in both classes to avoid unphysical behavior (such as negative energy densities).
Abstract: Dark energy and dark matter are only indirectly measured via their gravitational effects. It is possible that there is an exchange of energy within the dark sector, and this offers an interesting alternative approach to the coincidence problem. We consider two broad classes of interacting models where the energy exchange is a linear combination of the dark sector densities. The first class has been previously investigated, but we define new variables and find a new exact solution, which allows for a more direct, transparent, and comprehensive analysis. The second class has not been investigated in general form before. We give general conditions on the parameters in both classes to avoid unphysical behavior (such as negative energy densities).

286 citations

Journal ArticleDOI
TL;DR: In this article, the authors present cosmological constraints from a cosmic shear analysis of the fourth data release of the Kilo-Degree Survey (KiDS-1000), which doubled the survey area with nine-band optical and near-infrared photometry with respect to previous KiDS analyses.
Abstract: We present cosmological constraints from a cosmic shear analysis of the fourth data release of the Kilo-Degree Survey (KiDS-1000), which doubles the survey area with nine-band optical and near-infrared photometry with respect to previous KiDS analyses. Adopting a spatially flat standard cosmological model, we find S8 = σ8(Ωm/0.3)0.5 = 0.759−0.021+0.024 for our fiducial analysis, which is in 3σ tension with the prediction of the Planck Legacy analysis of the cosmic microwave background. We compare our fiducial COSEBIs (Complete Orthogonal Sets of E/B-Integrals) analysis with complementary analyses of the two-point shear correlation function and band power spectra, finding the results to be in excellent agreement. We investigate the sensitivity of all three statistics to a number of measurement, astrophysical, and modelling systematics, finding our S8 constraints to be robust and dominated by statistical errors. Our cosmological analysis of different divisions of the data passes the Bayesian internal consistency tests, with the exception of the second tomographic bin. As this bin encompasses low-redshift galaxies, carrying insignificant levels of cosmological information, we find that our results are unchanged by the inclusion or exclusion of this sample.Key words: gravitational lensing: weak / methods: observational / cosmology: observations / large-scale structure of Universe / cosmological parameters

286 citations


Network Information
Related Topics (5)
Black hole
40.9K papers, 1.5M citations
95% related
Dark matter
41.5K papers, 1.5M citations
94% related
Redshift
33.9K papers, 1.6M citations
92% related
Luminosity
26.3K papers, 1.1M citations
91% related
Galaxy
109.9K papers, 4.7M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023768
20221,518
2021737
2020784
2019782