scispace - formally typeset
Search or ask a question

Showing papers on "Coupled cluster published in 2019"


Journal ArticleDOI
TL;DR: A new variational hybrid quantum-classical algorithm which allows the system being simulated to determine its own optimal state, and highlights the potential of the adaptive algorithm for exact simulations with present-day and near-term quantum hardware.
Abstract: Quantum simulation of chemical systems is one of the most promising near-term applications of quantum computers. The variational quantum eigensolver, a leading algorithm for molecular simulations on quantum hardware, has a serious limitation in that it typically relies on a pre-selected wavefunction ansatz that results in approximate wavefunctions and energies. Here we present an arbitrarily accurate variational algorithm that, instead of fixing an ansatz upfront, grows it systematically one operator at a time in a way dictated by the molecule being simulated. This generates an ansatz with a small number of parameters, leading to shallow-depth circuits. We present numerical simulations, including for a prototypical strongly correlated molecule, which show that our algorithm performs much better than a unitary coupled cluster approach, in terms of both circuit depth and chemical accuracy. Our results highlight the potential of our adaptive algorithm for exact simulations with present-day and near-term quantum hardware.

483 citations


Journal ArticleDOI
TL;DR: In this article, a unitary coupled-cluster (UCC) ansatz based on a family of sparse generalized doubles operators, called k-UpCCGSD, was proposed for quantum computing applications.
Abstract: We introduce a unitary coupled-cluster (UCC) ansatz termed k-UpCCGSD that is based on a family of sparse generalized doubles operators, which provides an affordable and systematically improvable unitary coupled-cluster wave function suitable for implementation on a near-term quantum computer. k-UpCCGSD employs k products of the exponential of pair coupled-cluster double excitation operators (pCCD), together with generalized single excitation operators. We compare its performance in both efficiency of implementation and accuracy with that of the generalized UCC ansatz employing the full generalized single and double excitation operators (UCCGSD), as well as with the standard ansatz employing only single and double excitations (UCCSD). k-UpCCGSD is found to show the best scaling for quantum computing applications, requiring a circuit depth of [Formula: see text], compared with [Formula: see text] for UCCGSD, and [Formula: see text] for UCCSD, where N is the number of spin orbitals and η is the number of electrons. We analyzed the accuracy of these three ansatze by making classical benchmark calculations on the ground state and the first excited state of H4 (STO-3G, 6-31G), H2O (STO-3G), and N2 (STO-3G), making additional comparisons to conventional coupled cluster methods. The results for ground states show that k-UpCCGSD offers a good trade-off between accuracy and cost, achieving chemical accuracy for lower cost of implementation on quantum computers than both UCCGSD and UCCSD. UCCGSD is also found to be more accurate than UCCSD but at a greater cost for implementation. Excited states are calculated with an orthogonally constrained variational quantum eigensolver approach. This is seen to generally yield less accurate energies than for the corresponding ground states. We demonstrate that using a specialized multideterminantal reference state constructed from classical linear response calculations allows these excited state energetics to be improved.

335 citations


Journal ArticleDOI
TL;DR: A fully analytical implementation of the core-valence separation (CVS) scheme for the equation-of-motion (EOM) coupled-cluster singles and doubles (CCSD) method for calculations of core-level states, yielding similar spectral profiles but with absolute core excitation and ionization energies that are systematically closer to the corresponding experimental data.
Abstract: We present a fully analytical implementation of the core–valence separation (CVS) scheme for the equation-of-motion (EOM) coupled-cluster singles and doubles (CCSD) method for calculations of core-level states. Inspired by the CVS idea as originally formulated by Cederbaum, Domcke, and Schirmer, pure valence excitations are excluded from the EOM target space and the frozen-core approximation is imposed on the reference-state amplitudes and multipliers. This yields an efficient, robust, practical, and numerically balanced EOM-CCSD framework for calculations of excitation and ionization energies as well as state and transition properties (e.g., spectral intensities, natural transition, and Dyson orbitals) from both the ground and excited states. The errors in absolute excitation/ionization energies relative to the experimental reference data are on the order of 0.2–3.0 eV, depending on the K-edge considered and on the basis set used, and the shifts are systematic for each edge. Compared to a previously proposed CVS scheme where CVS was applied as a posteriori projection only during the solution of the EOM eigenvalue equations, the new scheme is computationally cheaper. It also achieves better cancellation of errors, yielding similar spectral profiles but with absolute core excitation and ionization energies that are systematically closer to the corresponding experimental data. Among the presented results are calculations of transient-state X-ray absorption spectra, relevant for interpretation of UV-pump/X-ray probe experiments.

151 citations


Journal ArticleDOI
TL;DR: This work provides accurate reference excitation energies for transitions involving a substantial amount of double excitation using a series of increasingly large diffuse-containing atomic basis sets and finds that the overall accuracy of these methods is highly dependent on both the system and the selected active space.
Abstract: Excited states exhibiting double-excitation character are notoriously difficult to model using conventional single-reference methods, such as adiabatic time-dependent density functional theory (TD-DFT) or equation-of-motion coupled cluster (EOM-CC). In addition, these states are typical experimentally "dark", making their detection in photoabsorption spectra very challenging. Nonetheless, they play a key role in the faithful description of many physical, chemical, and biological processes. In the present work, we provide accurate reference excitation energies for transitions involving a substantial amount of double excitation using a series of increasingly large diffuse-containing atomic basis sets. Our set gathers 20 vertical transitions from 14 small- and medium-size molecules (acrolein, benzene, beryllium atom, butadiene, carbon dimer and trimer, ethylene, formaldehyde, glyoxal, hexatriene, nitrosomethane, nitroxyl, pyrazine, and tetrazine). Depending on the size of the molecule, selected configuration interaction (sCI) and/or multiconfigurational (CASSCF, CASPT2, (X)MS-CASPT2, and NEVPT2) calculations are performed in order to obtain reliable estimates of the vertical transition energies. In addition, coupled cluster approaches including at least contributions from iterative triples (such as CC3, CCSDT, CCSDTQ, and CCSDTQP) are assessed. Our results clearly evidence that the error in CC methods is intimately related to the amount of double-excitation character of the transition. For "pure" double excitations (i.e., for transitions which do not mix with single excitations), the error in CC3 can easily reach 1 eV, while it goes down to a few tenths of an electronvolt for more common transitions (such as in trans-butadiene) involving a significant amount of singles. As expected, CC approaches including quadruples yield highly accurate results for any type of transition. The quality of the excitation energies obtained with multiconfigurational methods is harder to predict. We have found that the overall accuracy of these methods is highly dependent on both the system and the selected active space. The inclusion of the σ and σ* orbitals in the active space, even for transitions involving mostly π and π* orbitals, is mandatory in order to reach high accuracy. A theoretical best estimate (TBE) is reported for each transition. We believe that these reference data will be valuable for future methodological developments aiming at accurately describing double excitations.

134 citations


Journal ArticleDOI
TL;DR: In this article, the static dipole polarizability tensors of 7,211 small organic molecules computed using linear response coupled cluster singles and doubles theory (LR-CCSD) were predicted using a symmetry-adapted machine-learning approach.
Abstract: The molecular dipole polarizability describes the tendency of a molecule to change its dipole moment in response to an applied electric field. This quantity governs key intra- and intermolecular interactions, such as induction and dispersion; plays a vital role in determining the spectroscopic signatures of molecules; and is an essential ingredient in polarizable force fields. Compared with other ground-state properties, an accurate prediction of the molecular polarizability is considerably more difficult, as this response quantity is quite sensitive to the underlying electronic structure description. In this work, we present highly accurate quantum mechanical calculations of the static dipole polarizability tensors of 7,211 small organic molecules computed using linear response coupled cluster singles and doubles theory (LR-CCSD). Using a symmetry-adapted machine-learning approach, we demonstrate that it is possible to predict the LR-CCSD molecular polarizabilities of these small molecules with an error that is an order of magnitude smaller than that of hybrid density functional theory (DFT) at a negligible computational cost. The resultant model is robust and transferable, yielding molecular polarizabilities for a diverse set of 52 larger molecules (including challenging conjugated systems, carbohydrates, small drugs, amino acids, nucleobases, and hydrocarbon isomers) at an accuracy that exceeds that of hybrid DFT. The atom-centered decomposition implicit in our machine-learning approach offers some insight into the shortcomings of DFT in the prediction of this fundamental quantity of interest.

127 citations


Journal ArticleDOI
TL;DR: The degree to which machine learning can be used to accurately and transferably predict post-Hartree-Fock correlation energies is addressed, and the molecular-orbital-based machine learning (MOB-ML) method is applied to several test systems.
Abstract: We address the degree to which machine learning (ML) can be used to accurately and transferably predict post-Hartree-Fock correlation energies. Refined strategies for feature design and selection are presented, and the molecular-orbital-based machine learning (MOB-ML) method is applied to several test systems. Strikingly, for the second-order Moller-Plessett perturbation theory, coupled cluster with singles and doubles (CCSD), and CCSD with perturbative triples levels of theory, it is shown that the thermally accessible (350 K) potential energy surface for a single water molecule can be described to within 1 mhartree using a model that is trained from only a single reference calculation at a randomized geometry. To explore the breadth of chemical diversity that can be described, MOB-ML is also applied to a new dataset of thermalized (350 K) geometries of 7211 organic models with up to seven heavy atoms. In comparison with the previously reported Δ-ML method, MOB-ML is shown to reach chemical accuracy with threefold fewer training geometries. Finally, a transferability test in which models trained for seven-heavy-atom systems are used to predict energies for thirteen-heavy-atom systems reveals that MOB-ML reaches chemical accuracy with 36-fold fewer training calculations than Δ-ML (140 vs 5000 training calculations).

95 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the complete basis set limit (CBS) of LNO-CCSD(T) energies can be reliably approached via basis set extrapolation using large basis sets including diffuse functions.
Abstract: Recent optimization efforts and extensive benchmark applications are presented illustrating the accuracy and efficiency of the linear-scaling local natural orbital (LNO) coupled-cluster single-, double-, and perturbative triple-excitations [CCSD(T)] method. A composite threshold combination hierarchy (Loose, Normal, Tight, etc.) is introduced, which enables black box convergence tests and is useful to estimate the accuracy of the LNO-CCSD(T) energies with respect to CCSD(T). We also demonstrate that the complete basis set limit (CBS) of LNO-CCSD(T) energies can be reliably approached via basis set extrapolation using large basis sets including diffuse functions. Where reference CCSD(T) results are available, the mean (maximum) absolute errors of the LNO-CCSD(T) reaction and intermolecular interaction energies with the default Normal threshold combination are below 0.2-0.3 (0.6-1.0) kcal/mol, while the same measures with the Tight setting are 0.1 (0.2-0.5) kcal/mol for all the tested systems including highly complicated cases. The performance of LNO-CCSD(T) is also compared with that of other popular local CCSD(T) schemes. The exceptionally low hardware requirements of the present scheme enables the routine calculation of benchmark-quality energy differences within chemical accuracy of CCSD(T)/CBS for systems including a few hundred atoms. LNO-CCSD(T)/CBS calculations can also be performed for more than 1000 atoms with 45,000 atomic orbitals using a single, six-core CPU, about 100 GB memory, and comparable disk space.

94 citations


Journal ArticleDOI
TL;DR: The Fermionic Neural Neural Neural Network (FN) as discussed by the authors was proposed as a powerful wave function for many-electron systems, which is able to achieve accuracy beyond other variational quantum Monte Carlo Ansatze on a variety of atoms and small molecules.
Abstract: Given access to accurate solutions of the many-electron Schrodinger equation, nearly all chemistry could be derived from first principles. Exact wavefunctions of interesting chemical systems are out of reach because they are NP-hard to compute in general, but approximations can be found using polynomially-scaling algorithms. The key challenge for many of these algorithms is the choice of wavefunction approximation, or Ansatz, which must trade off between efficiency and accuracy. Neural networks have shown impressive power as accurate practical function approximators and promise as a compact wavefunction Ansatz for spin systems, but problems in electronic structure require wavefunctions that obey Fermi-Dirac statistics. Here we introduce a novel deep learning architecture, the Fermionic Neural Network, as a powerful wavefunction Ansatz for many-electron systems. The Fermionic Neural Network is able to achieve accuracy beyond other variational quantum Monte Carlo Ansatze on a variety of atoms and small molecules. Using no data other than atomic positions and charges, we predict the dissociation curves of the nitrogen molecule and hydrogen chain, two challenging strongly-correlated systems, to significantly higher accuracy than the coupled cluster method, widely considered the most accurate scalable method for quantum chemistry at equilibrium geometry. This demonstrates that deep neural networks can improve the accuracy of variational quantum Monte Carlo to the point where it outperforms other ab-initio quantum chemistry methods, opening the possibility of accurate direct optimization of wavefunctions for previously intractable many-electron systems.

90 citations


Journal ArticleDOI
TL;DR: This work investigates how digital quantum computers may be used to calculate molecular vibrational properties, such as energy levels and spectral information, on the basis of discrete-time quantum mechanics.
Abstract: Molecular vibrations underpin important phenomena such as spectral properties, energy transfer, and molecular bonding. However, obtaining a detailed understanding of the vibrational structure of even small molecules is computationally expensive. While several algorithms exist for efficiently solving the electronic structure problem on a quantum computer, there has been comparatively little attention devoted to solving the vibrational structure problem with quantum hardware. In this work, we discuss the use of quantum algorithms for investigating both the static and dynamic vibrational properties of molecules. We introduce a physically motivated unitary vibrational coupled cluster ansatz, which also makes our method accessible to noisy, near-term quantum hardware. We numerically test our proposals for the water and sulfur dioxide molecules.

87 citations


Journal ArticleDOI
TL;DR: The flexible nature of the sGDML model recovers local and non-local electronic interactions without imposing any restriction on the nature of interatomic potentials, and yields new qualitative insights into dynamics and spectroscopy of small molecules close to spectroscopic accuracy.
Abstract: We present the construction of molecular force fields for small molecules (less than 25 atoms) using the recently developed symmetrized gradient-domain machine learning (sGDML) approach [Chmiela et al., Nat. Commun. 9, 3887 (2018) and Chmiela et al., Sci. Adv. 3, e1603015 (2017)]. This approach is able to accurately reconstruct complex high-dimensional potential-energy surfaces from just a few 100s of molecular conformations extracted from ab initio molecular dynamics trajectories. The data efficiency of the sGDML approach implies that atomic forces for these conformations can be computed with high-level wavefunction-based approaches, such as the “gold standard” coupled-cluster theory with single, double and perturbative triple excitations [CCSD(T)]. We demonstrate that the flexible nature of the sGDML model recovers local and non-local electronic interactions (e.g., H-bonding, proton transfer, lone pairs, changes in hybridization states, steric repulsion, and n → π* interactions) without imposing any restriction on the nature of interatomic potentials. The analysis of sGDML molecular dynamics trajectories yields new qualitative insights into dynamics and spectroscopy of small molecules close to spectroscopic accuracy.

84 citations


Journal ArticleDOI
TL;DR: Only a few DFT methods are able to provide a balanced description of the spin-state energetics for all four studied iron complexes simultaneously, corroborating the non-universality problem of approximate density functionals.
Abstract: The accuracy of relative spin-state energetics predicted by selected quantum chemistry methods: coupled cluster theory at the CCSD(T) level, multiconfigurational perturbation theory (CASPT2, NEVPT2), multireference configuration interaction at the MRCISD+Q level, and a number of DFT methods, is quantitatively evaluated by comparison with the experimental data of four octahedral iron complexes. The available experimental data, either spin-forbidden transition energies or spin crossover enthalpies, are corrected for relevant environmental effects in order to derive the quantitative benchmark set of iron spin-state energetics. Comparison of theory predictions with the resulting reference data: (1) validates the high accuracy of the CCSD(T) method, particularly when based on Kohn-Sham orbitals, giving the maximum error below 2 kcal mol-1 and the mean absolute error (MAE) below 1 kcal mol-1; (2) corroborates the tendency of CASPT2 to systematically overstabilize higher-spin states by up to 5.5 kcal mol-1; (3) confirms that the latter problem is partly remedied by the recently proposed CASPT2/CC approach [Phung et al., J. Chem. Theory Comput., 2018, 14, 2446-2455]; (4) demonstrates that NEVPT2 performs worse than CASPT2, by giving errors up to 7 kcal mol-1; (5) shows that the accuracy of MRCISD+Q spin-state energetics strongly depends on the size-consistency correction: the Davidson-Silver and Pople corrections perform best (MAE < 3 kcal mol-1), whereas the standard Davidson correction is not recommended (MAE of 7 kcal mol-1). Only a few DFT methods (including the best performing ones identified in this study: B2PLYP-D3 and OPBE) are able to provide a balanced description of the spin-state energetics for all four studied iron complexes simultaneously, corroborating the non-universality problem of approximate density functionals.

Posted Content
TL;DR: Ryabinkin et al. as mentioned in this paper proposed an iterative version of the qubit coupled cluster (QCC) method, which employs constant-size quantum circuits at the expense of increasing the Hamiltonian size.
Abstract: An iterative version of the qubit coupled cluster (QCC) method [I.G. Ryabinkin et al., J. Chem. Theory Comput. 14, 6317 (2019)] is proposed. The new method seeks to find ground electronic energies of molecules on noisy intermediate-scale quantum (NISQ) devices. Each iteration involves a canonical transformation of the Hamiltonian and employs constant-size quantum circuits at the expense of increasing the Hamiltonian size. We numerically studied the convergence of the method on ground-state calculations for LiH, H$_2$O, and N$_2$ molecules and found that the exact ground-state energies can be systematically approached only if the generators of the QCC ansatz are sampled from a specific set of operators. We report an algorithm for constructing this set that scales linearly with the size of a Hamiltonian.

Journal ArticleDOI
TL;DR: The local energy decomposition (LED) analysis is developed, which provides a chemically meaningful decomposition of the interaction energy between two or more fragments computed at the domain-based local pair natural orbitals coupled cluster (DLPNO-CCSD(T)) level of theory, used in conjunction with other interpretation tools to study a series of molecular adducts held together by intermolecular interactions of different natures.
Abstract: The development of post-Hartree–Fock (post-HF) energy decomposition schemes that are able to decompose the HF and correlation components of the interaction energy into chemically meaningful contributions is a very active field of research. One of the challenges is to provide a clear-cut quantification to the elusive London dispersion component of the intermolecular interaction. London dispersion is well-known to be a pure correlation effect, and as such it is not properly described by mean field theories. In this context, we have recently developed the local energy decomposition (LED) analysis, which provides a chemically meaningful decomposition of the interaction energy between two or more fragments computed at the domain-based local pair natural orbitals coupled cluster (DLPNO-CCSD(T)) level of theory. In this work, this scheme is used in conjunction with other interpretation tools to study a series of molecular adducts held together by intermolecular interactions of different natures. The HF and corre...

Journal ArticleDOI
TL;DR: The ph-AFQMC method has tremendous potential, exhibiting unprecedented consistency and accuracy compared to other approximate quantum chemical approaches, and is found to give robust agreement with experiment superior to that of all other methods.
Abstract: The bond dissociation energies of a set of 44 3d transition metal-containing diatomics are computed with phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) utilizing a correlated sampling tec...

Journal ArticleDOI
TL;DR: An extension of this scheme that allows for the analysis of interaction energies of open-shell molecular systems calculated at the UHF-DLPNO-CCSD(T) level is presented and the results are used to discuss the mechanism that governs the change in the singlet–triplet energy gap of methylene and heme upon adduct formation.
Abstract: Local energy decomposition (LED) analysis decomposes the interaction energy between two fragments calculated at the domain-based local pair natural orbital CCSD(T) (DLPNO-CCSD(T)) level of theory into a series of chemically meaningful contributions and has found widespread applications in the study of noncovalent interactions. Herein, an extension of this scheme that allows for the analysis of interaction energies of open-shell molecular systems calculated at the UHF-DLPNO-CCSD(T) level is presented. The new scheme is illustrated through applications to the CH2···X (X = He, Ne, Ar, Kr, and water) and heme···CO interactions in the low-lying singlet and triplet spin states. The results are used to discuss the mechanism that governs the change in the singlet–triplet energy gap of methylene and heme upon adduct formation.

Journal ArticleDOI
TL;DR: Coupled cluster theory as discussed by the authors provides a compelling framework of approximate infinite-order perturbation theory in the form of an exponential of cluster operators describing the true quantum many-body effects of the electronic wave function at a computational cost that scales polynomially with system size.
Abstract: The workhorse method of computational materials science is undeniably density functional theory in the Kohn-Sham framework of approximate exchange and correlation energy functionals. However, the need for highly accurate predictions of ground and excited state properties in materials science motivates the further development and exploration of alternative as well as complementary techniques. Among these alternative approaches, quantum chemical wavefunction based theories and in particular coupled cluster theory hold the promise to fill a gap in the toolbox of computational materials scientists. Coupled cluster (CC) theory provides a compelling framework of approximate infinite-order perturbation theory in the form of an exponential of cluster operators describing the true quantum many-body effects of the electronic wave function at a computational cost that, despite being significantly more expensive than DFT, scales polynomially with system size. The hierarchy of size-extensive approximate methods established in the framework of CC theory achieves systematic improvability for many materials properties. This is in contrast to currently available density functionals that often suffer from uncontrolled approximations that limit the accuracy in the prediction of materials properties. In this tutorial-style review we will introduce basic concepts of coupled cluster theory and recent developments that increase its computational efficiency for calculations of molecules, solids and materials in general. We will touch upon the connection between coupled cluster theory and the random-phase approximation to bridge the gap between traditional quantum chemistry and many-body Green’s function theories that are widely-used in the field of solid state physics. We will discuss various approaches to improve the computational performance without compromising accuracy. These approaches include large-scale parallel design as well as techniques that reduce the prefactor of the computational complexity. A central part of this article discusses the convergence of calculated properties to the thermodynamic limit which is of significant importance for reliable predictions of materials properties and constitutes an additional challenge compared to calculations of large molecules. Furthermore we mention technical aspects of computer code implementations of periodic coupled cluster theories in different numerical frameworks of the one-electron orbital basis; the projector-augmented-wave formalism using a plane wave basis set and the numeric atom-centered-orbital with resolution-of-identity.

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the extension of the SES-CC formalism to unitary CC formalisms, which results in a Hermitian form of the effective Hamiltonian.
Abstract: In this paper, we discuss the extension of the recently introduced subsystem embedding subalgebra coupled cluster (SES-CC) formalism to unitary CC formalisms. In analogy to the standard single-reference SES-CC formalism, its unitary CC extension allows one to include the dynamical (outside the active space) correlation effects in an SES induced complete active space (CAS) effective Hamiltonian. In contrast to the standard single-reference SES-CC theory, the unitary CC approach results in a Hermitian form of the effective Hamiltonian. Additionally, for the double unitary CC (DUCC) formalism, the corresponding CAS eigenvalue problem provides a rigorous separation of external cluster amplitudes that describe dynamical correlation effects-used to define the effective Hamiltonian-from those corresponding to the internal (inside the active space) excitations that define the components of eigenvectors associated with the energy of the entire system. The proposed formalism can be viewed as an efficient way of downfolding many-electron Hamiltonian to the low-energy model represented by a particular choice of CAS. In principle, this technique can be extended to any type of CAS representing an arbitrary energy window of a quantum system. The Hermitian character of low-dimensional effective Hamiltonians makes them an ideal target for several types of full configuration interaction type eigensolvers. As an example, we also discuss the algebraic form of the perturbative expansions of the effective DUCC Hamiltonians corresponding to composite unitary CC theories and discuss possible algorithms for hybrid classical and quantum computing. Given growing interest in quantum computing, we provide energies for H2 and Be systems obtained with the quantum phase estimator algorithm available in the Quantum Development Kit for the approximate DUCC Hamiltonians.

Journal ArticleDOI
TL;DR: In this paper, an extension of neural-network quantum states to model interacting fermionic problems is presented, which can be used to study a variety of lattice and continuous-space problems.
Abstract: Neural-network quantum states have been successfully used to study a variety of lattice and continuous-space problems. Despite a great deal of general methodological developments, representing fermionic matter is however still early research activity. Here we present an extension of neural-network quantum states to model interacting fermionic problems. Borrowing techniques from quantum simulation, we directly map fermionic degrees of freedom to spin ones, and then use neural-network quantum states to perform electronic structure calculations. For several diatomic molecules in a minimal basis set, we benchmark our approach against widely used coupled cluster methods, as well as many-body variational states. On the test molecules, we recover almost the entirety of the correlation energy. We systematically improve upon coupled cluster methods and Jastrow wave functions, reaching levels of chemical accuracy or better. Finally, we discuss routes for future developments and improvements of the methods presented.

Journal ArticleDOI
TL;DR: A hybrid high-level-low-level quantum method that combines DFT with dispersion for the full periodic system with second order Møller-Plesset perturbation theory (MP2) for the reaction site within a mechanical embedding scheme is shown to yield chemical accuracy for a set of 12 molecule-surface interaction systems for which reliable experimental data are available.
Abstract: Atomistic understanding of complex surface phenomena such as heterogeneous catalysis or storage and separation of energy-relevant gases in nanoporous materials (zeolites; metal-organic frameworks, MOFs) requires knowledge about reaction energies and energy barriers for elementary steps. This is difficult to obtain from experiment since the number of possible chemical, adsorption/desorption, and diffusion steps coupled to complex reaction networks is large, and so is the number of possible surface sites. Here is an important role of quantum chemistry which can provide rate and equilibrium constants for elementary steps "ab initio." To be useful, the predictions have to reach chemical accuracy (4 kJ/mol) which is difficult to achieve because realistic models of the surface systems may comprise of the order of a thousand atoms. While density functional theory (DFT) as a rule cannot be trusted to yield results within chemical accuracy limits, methods that are accurate enough (Coupled Cluster with Single, Double, and perturbative Triple Substitution, CCSD(T)) cannot be applied because of their exponential scaling with system size. This Account presents a hybrid high-level-low-level quantum method that combines DFT with dispersion for the full periodic system with second order Moller-Plesset perturbation theory (MP2) for the reaction site within a mechanical embedding scheme. In addition, to check if MP2 is accurate enough, we calculate Coupled Cluster (CC) corrections with Single, Double, and perturbatively treated Triple substitutions (CCSD(T)) for sufficiently small models of the reaction site. This multilevel hybrid MP2:DFT-D+ΔCC method is shown to yield chemical accuracy for a set of 12 molecule-surface interaction systems for which reliable experimental data are available. For CO/MgO(001), the history of the experiment-theory comparison illustrates two problems: (i) Do experiment and theory look at the same surface site? (ii) Does theory calculate the same quantity as derived from experiment? The hybrid MP2:DFT-D+ΔCC data set generated includes the MgO(001) surface, the Mg2(dobdc) metal-organic framework, and the proton forms of the CHA and MFI zeolites interacting with the H2, N2, CO, CO2, CH4, and C2H6 molecules. It serves two purposes. First, it will be useful for testing density functionals with respect to their performance for molecule-surface interactions. Second, it establishes the hybrid MP2:DFT-D+ΔCC method as a reliable and powerful tool for ab initio predictions of adsorption and reaction energies as well as energy barriers when testing reaction mechanisms. For adsorption of small molecules in MOFs, isotherm predictions have reached a level of accuracy that deviations between theoretical predictions and experiments indicate sample imperfections. For elementary steps of the industrially important methanol-to-olefin process, our hybrid MP2:PBE+D+ΔCC calculations yield rate constants in agreement with experiment within chemical accuracy limits, finally achieving for molecule-surface reactions which was possible so hitherto only for gas phase reactions involving not more than 10 atoms.

Journal ArticleDOI
TL;DR: The CVS-EOMIP-CC methods are shown to be numerically more stable and more accurate than the parent EOMIP -CC methods, even when the calculations using the latter can be tightly converged.
Abstract: Benchmark scalar-relativistic core–valence-separated (CVS) equation-of-motion coupled-cluster ionization potential (EOMIP-CC) calculations of 21 K-edge ionization energies of C, O, N, and F in 14 molecules are reported. The CVS-EOMIP-CC methods are shown to be numerically more stable and more accurate than the parent EOMIP-CC methods, even when the calculations using the latter can be tightly converged. The superior performance of the CVS scheme is attributed to the exclusion of spurious couplings between core-ionized states and valence continuum states. Systematic improvement of computed K-edge ionization energies within the CVS-EOMIP-CC hierarchy, including the CC singles and doubles (CCSD) method, the CC singles, doubles, and triples (CCSDT) method, and the CC singles, doubles, triples, and quadruples (CCSDTQ) method, is demonstrated, with CCSDTQ yielding essentially quantitative results. Maximum absolute deviations between computed and experimental results amount to 2.54 eV for CCSD/cc-pCVQZ, 0.54 eV ...

Journal ArticleDOI
TL;DR: The NEO-CCSD method is a promising, parameter free approach for including nuclear quantum effects in high-level electronic structure calculations of molecular systems and predicts accurate proton densities in reasonable agreement with a grid-based reference.
Abstract: The nuclear-electronic orbital (NEO) method treats all electrons and specified nuclei, typically protons, quantum mechanically on the same level with molecular orbital techniques. This approach dir...

Journal ArticleDOI
TL;DR: The proposed unitary CC formalism can be viewed as an efficient way of downfolding many-electron Hamiltonian to the low-energy model represented by a particular choice of CAS and can be extended to any type of CAS representing an arbitrary energy window of a quantum system.
Abstract: In this paper we outline the extension of recently introduced the sub-system embedding sub-algebras coupled cluster (SES-CC) formalism to the unitary CC formalism. In analogy to the standard single-reference SES-CC formalism, its unitary CC extension allows one to include the dynamical (outside the active space) correlation effects in an SES induced complete active space (CAS) effective Hamiltonian. In contrast to the standard single-reference SES-CC theory, the unitary CC approach results in a Hermitian form of the effective Hamiltonian. Additionally, for the double unitary CC formalis (DUCC) the corresponding CAS eigenvalue problem provides a rigorous separation of external cluster amplitudes that describe dynamical correlation effects - used to define the effective Hamiltonian - from those corresponding to the internal (inside the active space) excitations that define the components of eigenvectors associated with the energy of the entire system. The proposed formalism can be viewed as an efficient way of downfolding many-electron Hamiltonian to the low-energy model represented by a particular choice of CAS. In principle, this technique can be extended to any type of complete active space representing an arbitrary energy window of a quantum system. The Hermitian character of low-dimensional effective Hamiltonians makes them an ideal target for several types of full configuration interaction (FCI) type eigensolvers. As an example, we also discuss the algebraic form of the perturbative expansions of the effective DUCC Hamiltonians corresponding to composite unitary CC theories and discuss possible algorithms for hybrid classical and quantum computing.

Journal ArticleDOI
TL;DR: Chmiela et al. as mentioned in this paper used symmetrized gradient-domain machine learning (sGDML) to reconstruct complex high-dimensional potential energy surfaces from a few 100s of molecular conformations extracted from ab initio molecular dynamics trajectories.
Abstract: We present the construction of molecular force fields for small molecules (less than 25 atoms) using the recently developed symmetrized gradient-domain machine learning (sGDML) approach [Chmiela et al., Nat. Commun. 9, 3887 (2018); Sci. Adv. 3, e1603015 (2017)]. This approach is able to accurately reconstruct complex high-dimensional potential-energy surfaces from just a few 100s of molecular conformations extracted from ab initio molecular dynamics trajectories. The data efficiency of the sGDML approach implies that atomic forces for these conformations can be computed with high-level wavefunction-based approaches, such as the "gold standard" CCSD(T) method. We demonstrate that the flexible nature of the sGDML model recovers local and non-local electronic interactions (e.g. H-bonding, proton transfer, lone pairs, changes in hybridization states, steric repulsion and $n\to\pi^*$ interactions) without imposing any restriction on the nature of interatomic potentials. The analysis of sGDML molecular dynamics trajectories yields new qualitative insights into dynamics and spectroscopy of small molecules close to spectroscopic accuracy.

Journal ArticleDOI
TL;DR: The HANDE-QMC code is described, an open-source implementation of FCIQMC, CCMC and DMQMC, including initiator and semistochastic adaptations, allowing stochastic sampling of the coupled cluster wave function and the exact thermal density matrix, respectively.
Abstract: Building on the success of Quantum Monte Carlo techniques such as diffusion Monte Carlo, alternative stochastic approaches to solve electronic structure problems have emerged over the past decade. The full configuration interaction quantum Monte Carlo (FCIQMC) method allows one to systematically approach the exact solution of such problems, for cases where very high accuracy is desired. The introduction of FCIQMC has subsequently led to the development of coupled cluster Monte Carlo (CCMC) and density matrix quantum Monte Carlo (DMQMC), allowing stochastic sampling of the coupled cluster wave function and the exact thermal density matrix, respectively. In this Article, we describe the HANDE-QMC code, an open-source implementation of FCIQMC, CCMC and DMQMC, including initiator and semistochastic adaptations. We describe our code and demonstrate its use on three example systems; a molecule (nitric oxide), a model solid (the uniform electron gas), and a real solid (diamond). An illustrative tutorial is also included.

Journal ArticleDOI
TL;DR: The ground state truncation parameters are sufficient to control the accuracy of the computed EA values, although a new set of integrals for singles PNOs must be generated at the DLPNO integral transformation step.
Abstract: This work describes a domain-based local pair natural orbital (DLPNO) implementation of the equation of motion coupled cluster method for the computation of electron affinities (EAs) including single and double excitations. Similar to our earlier work on ionization potentials (IPs), the method reported in this study uses the ground state DLPNO framework and extends it to the electron attachment problem. While full linear scaling could not be achieved as in the IP case, leaving the Fock/Koopmans’ contributions in the canonical basis and using a tighter threshold for singles PNOs allows us to compute accurate EAs and retain most of the efficiency of the DLPNO technique. Thus as in the IP case, the ground state truncation parameters are sufficient to control the accuracy of the computed EA values, although a new set of integrals for singles PNOs must be generated at the DLPNO integral transformation step. Using standard settings, our method reproduces the canonical results with a maximum absolute deviation of 49 meV for bound states of a test set of 24 molecules. Using the same settings, a calculation involving more than 4500 basis functions, including diffuse functions, takes four days on four cores, with only 48 min spent in the EA module itself.

Journal ArticleDOI
TL;DR: With the consideration of basis-set effects and the corrections to the CVS approximation, ΔCCSD(T) has been shown to provide highly accurate results for absolute values of core-ionization energies, with MaxAE of 0.22 eV and SD of 0-13 eV.
Abstract: A thorough study of the performance of delta-coupled-cluster (ΔCC) methods for calculations of core-ionization energies for elements of the first long row of the periodic table is reported. Inspired by the core-valence separation (CVS) scheme in response theories, a simple CVS scheme of excluding the vacant core orbital from the CC treatment has been adopted to solve the convergence problem of the CC equations for core-ionized states. Dynamic correlation effects have been shown to make important contributions to the computed core-ionization energies, especially to chemical shifts of these quantities. The maximum absolute error (MaxAE) and standard deviation (SD) of delta-Hartree-Fock results for chemical shifts of core-ionization energies with respect to the corresponding experimental values amount to more than 1.7 and 0.6 eV, respectively. In contrast, the inclusion of electron correlation in ΔCC singles and doubles augmented with a noniterative triples correction [ΔCCSD(T)] method significantly reduces the corresponding deviations to around 0.3 and 0.1 eV. With the consideration of basis set effects and the corrections to the CVS approximation, ΔCCSD(T) has been shown to provide highly accurate results for absolute values of core-ionization energies, with a MaxAE of 0.22 eV and SD of 0.13 eV. To further demonstrate the usefulness of ΔCCSD(T), calculations of carbon K-edge ionization energies of ethyl trifluoroacetate, a molecule of significant interest to the study of X-ray spectroscopy and dynamics, are reported.

Journal ArticleDOI
TL;DR: This work presents a detailed comparison between wave-function-based and particle/hole techniques for the prediction of band gap energies of semiconductors and demonstrates that bt-PNO-STEOM-CC yields accurate results that are in better than 0.2 eV agreement with the experiment.
Abstract: In this work, we present a detailed comparison between wave-function-based and particle/hole techniques for the prediction of band gap energies of semiconductors. We focus on the comparison of the back-transformed Pair Natural Orbital Similarity Transformed Equation of Motion Coupled-Cluster (bt-PNO-STEOM-CCSD) method with Time Dependent Density Functional Theory (TD-DFT) and Delta Self Consistent Field/DFT (Δ-SCF/DFT) that are employed to calculate the band gap energies in a test set of organic and inorganic semiconductors. Throughout, we have used cluster models for the calculations that were calibrated by comparing the results of the cluster calculations to periodic DFT calculations with the same functional. These calibrations were run with cluster models of increasing size until the results agreed closely with the periodic calculation. It is demonstrated that bt-PNO-STEOM-CC yields accurate results that are in better than 0.2 eV agreement with the experiment. This holds for both organic and inorganic semiconductors. The efficiency of the employed computational protocols is thoroughly discussed. Overall, we believe that this study is an important contribution that can aid future developments and applications of excited state coupled cluster methods in the field of solid-state chemistry and heterogeneous catalysis.

Journal ArticleDOI
TL;DR: A new method is used, called GMM(P), for extrapolation to the complete configuration interaction limit to go beyond triple excitations and in particular to approximate the CCSDTQ(P)/CBS limit, and the present findings have broad implications for obtaining quantitative rate constants for complex reaction systems in atmospheric and combustion chemistry.
Abstract: Kinetics measurements on radical-radical reactions are often unavailable experimentally, and obtaining quantitative rate constants for such reactions by theoretical methods is challenging because the transition states and the reactants are often strongly correlated. Treating strongly correlated systems by coupled cluster theory limited to single, double, and triple connected excitations is often inadequate. We therefore use a new method, called GMM(P), for extrapolation to the complete configuration interaction limit to go beyond triple excitations and in particular to approximate the CCSDTQ(P)/CBS limit. Here, we present this method and use it to investigate the CH3O + O2 reaction. The contribution of connected quadruple excitations to the barrier height energy is found to be -3.13 kcal/mol, and adding a quasiperturbative calculation of the effect of connected pentuple excitations brings the post-connected-triples contributions to -3.44 kcal/mol, which corresponds to Boltzmann factors that increase calculated rate constants by factors of 1.0 × 103, 3.3 × 102, and 18 at 250, 298, and 600 K, respectively. We present rate constants for temperatures from 250 to 2000 K, and we find that the Arrhenius activation energy increases from 0.58 to 9.68 kcal/mol over this range. We also find reasonably good accuracy for the barrier height with the MN15-L exchange-correlation functional, and we calculate rate constants by a combination of GMM(P) and MN15-L electronic structure calculations and conventional and variational transition state theory, in particular canonical variational theory with small-curvature tunneling. The present findings have broad implications for obtaining quantitative rate constants for complex reaction systems in atmospheric and combustion chemistry.

Journal ArticleDOI
TL;DR: In this paper, the symmetry-projected coupled-cluster (SPC) formalism is proposed to describe strongly correlated systems, where the disentangled clusters are solved by first-order ordinary differential equations.
Abstract: Background: While coupled-cluster theory accurately models weakly correlated quantum systems, it often fails in the presence of strong correlations where the standard mean-field picture is qualitatively incorrect. In many cases, these failures can be largely ameliorated by permitting the mean-field reference to break physical symmetries. Symmetry-broken coupled-cluster, e.g., Bogoliubov-coupled-cluster, theory can indeed provide reasonably accurate energetic predictions, but the broken symmetry can compromise the quality of the resulting wave function and predictions of observables other than the energy. Purpose: Merging symmetry projection and coupled-cluster theory is therefore an appealing way to describe strongly correlated systems. One indeed expects to inherit and further improve the energetic accuracy of broken-symmetry coupled cluster while retaining proper symmetries. Methods: Independently, two different but related formalisms have been recently proposed to achieve this goal. The two formalisms are contrasted in this manuscript, with results tested on the Richardson pairing Hamiltonian. While the present paper focuses on the breaking and restoration of U(1) global-gauge symmetry associated with particle-number conservation, the symmetry-projected coupled-cluster formalism is applicable to other symmetries such as rotational (i.e., spin) symmetry. Results: Both formalisms are based on the disentangled cluster representation of the symmetry-rotated coupled-cluster wave function. However, they differ in the way that the disentangled clusters are solved. One approach sets up angle-dependent coupled-cluster equations, while the other involves first-order ordinary differential equations. The latter approach yields energies and occupation probabilities significantly better than those of number-projected Bardeen-Cooper-Schrieffer (BCS) and BCS coupled cluster and, when the disentangled clusters are truncated at low excitation levels, has a computational cost not too much larger than that of BCS coupled cluster. Conclusions: The high quality of results presented in this manuscript indicates that symmetry-projected coupled cluster is a promising method that can accurately describe both weakly and strongly correlated finite many-fermion systems.

Journal ArticleDOI
TL;DR: In this paper, an orbital optimized method for unitary coupled cluster theory (OO-UCC) within the variational quantum eigensolver (VQE) framework for quantum computers is proposed.
Abstract: We propose an orbital optimized method for unitary coupled cluster theory (OO-UCC) within the variational quantum eigensolver (VQE) framework for quantum computers. OO-UCC variationally determines the coupled cluster amplitudes and also molecular orbital coefficients. Owing to its fully variational nature, first-order properties are readily available. This feature allows the optimization of molecular structures in VQE without solving any additional equations. Furthermore, the method requires smaller active space and shallower quantum circuit than UCC to achieve the same accuracy. We present numerical examples of OO-UCC using quantum simulators, which include the geometry optimization of the water and ammonia molecules using analytical first derivatives of the VQE.