scispace - formally typeset
Search or ask a question
Topic

Coupled cluster

About: Coupled cluster is a research topic. Over the lifetime, 6280 publications have been published within this topic receiving 301055 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The multi-ionization equation-of-motion coupled-cluster (CC) method is developed for multireference (MR) problems, depending upon a formal matrix diagonalization step to define the coefficients in the wavefunction in an unbiased way that allows for important MR character.
Abstract: The multi-ionization equation-of-motion coupled-cluster (CC) method is developed for multireference (MR) problems. It is operationally single reference, depending upon a formal matrix diagonalization step to define the coefficients in the wavefunction in an unbiased way that allows for important MR character. The method is illustrated for the autoisomerization of cyclobutadiene, which has a very large multireference effect and compared to other MR-CC results. The newly implemented methods are also used to obtain the vertical double ionization (DI) potentials of several small molecules (H2O, CO, C2H2, C2H4). Also, the performance of the new methods is analyzed by plotting the potential energy curve for twisted ethylene as a function of a dihedral angle between two methylenes. Evaluation of the total molecular energy via MR-DI-CC calculations makes it possible to avoid an unphysical cusp.

118 citations

Journal ArticleDOI
TL;DR: By exploiting a determinantal full configuration interaction (FCI) algorithm, the correlation energies of molecules at any arbitrary order of coupled-cluster (CC) theory as well as high orders of configuration interaction and many-body perturbation theory are computed.

117 citations

Journal ArticleDOI
TL;DR: Intermolecular interaction potentials of methane and ethylene dimers were calculated by Hartree-Fock, Moller-Plesset, coupled cluster and density functional methods as mentioned in this paper.

117 citations

Journal ArticleDOI
TL;DR: The ANI-1x and ANi-1ccx ML-based general-purpose potentials for organic molecules were developed through active learning; an automated data diversification process, and are provided to aid research and development of ML models for chemistry.
Abstract: Maximum diversification of data is a central theme in building generalized and accurate machine learning (ML) models. In chemistry, ML has been used to develop models for predicting molecular properties, for example quantum mechanics (QM) calculated potential energy surfaces and atomic charge models. The ANI-1x and ANI-1ccx ML-based general-purpose potentials for organic molecules were developed through active learning; an automated data diversification process. Here, we describe the ANI-1x and ANI-1ccx data sets. To demonstrate data diversity, we visualize it with a dimensionality reduction scheme, and contrast against existing data sets. The ANI-1x data set contains multiple QM properties from 5 M density functional theory calculations, while the ANI-1ccx data set contains 500 k data points obtained with an accurate CCSD(T)/CBS extrapolation. Approximately 14 million CPU core-hours were expended to generate this data. Multiple QM calculated properties for the chemical elements C, H, N, and O are provided: energies, atomic forces, multipole moments, atomic charges, etc. We provide this data to the community to aid research and development of ML models for chemistry. Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.12046440

117 citations

Journal ArticleDOI
TL;DR: The present contribution gathers a large, diverse and accurate set of more than 200 highly-accurate transition energies for states of various natures (valence, Rydberg, singlet, triplet, n-pi*, pi-pi*...) to benchmark a series of popular methods for excited state calculations.
Abstract: Following our previous work focussing on compounds containing up to 3 non-hydrogen atoms [\emph{J. Chem. Theory Comput.} {\bfseries 14} (2018) 4360--4379], we present here highly-accurate vertical transition energies obtained for 27 molecules encompassing 4, 5, and 6 non-hydrogen atoms. To obtain these energies, we use equation-of-motion coupled cluster theory up to the highest technically possible excitation order for these systems (CC3, EOM-CCSDT, and EOM-CCSDTQ), selected configuration interaction (SCI) calculations (with tens of millions of determinants in the reference space), as well as the multiconfigurational $n$-electron valence state perturbation theory (NEVPT2) method. All these approaches are applied in combination with diffuse-containing atomic basis sets. For all transitions, we report at least CC3/\emph{aug}-cc-pVQZ vertical excitation energies as well as CC3/\emph{aug}-cc-pVTZ oscillator strengths for each dipole-allowed transition. We show that CC3 almost systematically delivers transition energies in agreement with higher-level methods with a typical deviation of $\pm 0.04$ eV, except for transitions with a dominant double excitation character where the error is much larger. The present contribution gathers a large, diverse and accurate set of more than 200 highly-accurate transition energies for states of various natures (valence, Rydberg, singlet, triplet, $n \rightarrow \pi^*$, $\pi \rightarrow \pi^*$, \ldots). We use this series of theoretical best estimates to benchmark a series of popular methods for excited state calculations: CIS(D), ADC(2), CC2, STEOM-CCSD, EOM-CCSD, CCSDR(3), CCSDT-3, CC3, as well as NEVPT2. The results of these benchmarks are compared to the available literature data.

117 citations


Network Information
Related Topics (5)
Ab initio
57.3K papers, 1.6M citations
94% related
Excited state
102.2K papers, 2.2M citations
88% related
Ground state
70K papers, 1.5M citations
88% related
Molecule
52.4K papers, 1.2M citations
85% related
Electronic structure
43.9K papers, 1.1M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023163
2022351
2021267
2020344
2019253
2018244