scispace - formally typeset
Search or ask a question
Topic

Coupled cluster

About: Coupled cluster is a research topic. Over the lifetime, 6280 publications have been published within this topic receiving 301055 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the frozen natural orbital (FNO) basis set truncation for coupled-cluster theory is described and compared at the CCSD(T) level in both a DZP and cc-pVTZ basis set that agree with literature values.
Abstract: The method of frozen natural orbital (FNO) basis set truncation for coupled-cluster theory is described. Numerical comparisons of the FNO potential energy surfaces of a group of small molecules at the CCSD(T) level in DZP, cc-pVTZ, cc-pVQZ bases show that truncation of up to 50% of the virtual space yields CC correlation energies that are accurate to 90 or 95% when added to the full MBPT(2) basis result. The FNO truncation method is also applied to dimethylnitramine (DMNA): both the equilibrium structure and dimer interactions, yielding results at the CCSD(T) level in both a DZP and cc-pVTZ basis set that agree with literature values. CCSD(T) calculations at two possible equilibrium structures of 1,3,5-trinitrohexahydro-1,3,5-triazine (RDX) in a truncated DZP basis are also reported.

112 citations

Journal ArticleDOI
TL;DR: Deleuze et al. as discussed by the authors presented a benchmark theoretical determination of the ionization thresholds of polycyclic aromatic compounds within chemical accuracy [0.02-0.07 eV].
Abstract: In straightforward continuation of Green’s function studies of the ultraviolet photoelectron spectra of polycyclic aromatic compounds [Deleuze et al., J. Chem. Phys. 115, 5859 (2001); M. S. Deleuze, ibid. 116, 7012 (2002)], we present a benchmark theoretical determination of the ionization thresholds of benzene, naphthalene, anthracene, naphthacene (tetracene), pentacene, and hexacene, within chemical accuracy [0.02–0.07 eV]. The vertical ionization potentials of these compounds have been obtained from series of single-point calculations at the Hartree–Fock, second-, third-, and partial fourth-order Moller–Plesset (MP2, MP3, MP4SDQ) levels, and from coupled cluster calculations including single and double excitations (CCSD) as well as a perturbative estimate of connected triple excitations [CCSD(T)], using basis sets of improving quality, introducing up to 510, 790, 1070, 1350, 1630, and 1910 basis functions in the computations, respectively. A focal point analysis of the convergence of the calculated ionization potentials has been performed in order to extrapolate the CCSD(T) results to an asymptotically (cc-pV∞Z) complete basis set. The present results confirm the adequacy of the outer-valence Green’s function scheme for strongly correlated systems. Adiabatic ionization energies have been further determined by incorporating Beck-three-parameter Lee–Yang–Parr functional corrections for zero-point vibrational energies and for geometrical relaxations. Extension of the analysis to the CCSD(T)/cc-pV∞Z level shows that the energy minimum form of the benzene radical cation is an obtuse structure related to the 2B2g state. Isotopic shifts of the adiabatic ionization potentials, due to deuterium substitution of hydrogens, have also been discussed.

112 citations

Journal ArticleDOI
TL;DR: In this paper, a fully quadratic coupled-cluster method with a multidimensional reference space is applied to a DZP basis study of the model system, H4.
Abstract: Employing the Hilbert space ansatz, a fully quadratic coupled-cluster method with a multidimensional reference space is applied to a DZP basis study of the model system, H4. The reference space is described by two to four configurations at the level of single and double excitations, and single and double excitation operators are included in the expansions for the cluster and wave operator through quadratic terms. The performance of quadratic MRCCSD is investigated for the ground and three excited states of the H4 system consisting of two stretched hydrogen molecules in a trapezoidal configuration where the degree of quasidegeneracy is varied from a nondegenerate situation to a completely degenerate one. Compared to full CI, in the highly degenerate region, the MRCCSD works quite well. In less degenerate regions, the accuracy is less satisfactory.

112 citations

Journal ArticleDOI
TL;DR: The available experimental data do not provide a justification for using conventional single-reference CC theory calculations to validate or test xc functionals for systems involving 3d transition metals, and the T1 diagnostics correlate the errors better than either the M diagnostics or the B1 DFT-based diagnostics.
Abstract: Coupled-cluster (CC) methods have been extensively used as the high-level approach in quantum electronic structure theory to predict various properties of molecules when experimental results are unavailable. It is often assumed that CC methods, if they include at least up to connected-triple-excitation quasiperturbative corrections to a full treatment of single and double excitations (in particular, CCSD(T)), and a very large basis set, are more accurate than Kohn-Sham (KS) density functional theory (DFT). In the present work, we tested and compared the performance of standard CC and KS methods on bond energy calculations of 20 3d transition metal-containing diatomic molecules against the most reliable experimental data available, as collected in a database called 3dMLBE20. It is found that, although the CCSD(T) and higher levels CC methods have mean unsigned deviations from experiment that are smaller than most exchange-correlation functionals for metal-ligand bond energies of transition metals, the improvement is less than one standard deviation of the mean unsigned deviation. Furthermore, on average, almost half of the 42 exchange-correlation functionals that we tested are closer to experiment than CCSD(T) with the same extended basis set for the same molecule. The results show that, when both relativistic and core-valence correlation effects are considered, even the very high-level (expensive) CC method with single, double, triple, and perturbative quadruple cluster operators, namely, CCSDT(2)Q, averaged over 20 bond energies, gives a mean unsigned deviation (MUD(20) = 4.7 kcal/mol when one correlates only valence, 3p, and 3s electrons of transition metals and only valence electrons of ligands, or 4.6 kcal/mol when one correlates all core electrons except for 1s shells of transition metals, S, and Cl); and that is similar to some good xc functionals (e.g., B97-1 (MUD(20) = 4.5 kcal/mol) and PW6B95 (MUD(20) = 4.9 kcal/mol)) when the same basis set is used. We found that, for both coupled cluster calculations and KS calculations, the T1 diagnostics correlate the errors better than either the M diagnostics or the B1 DFT-based diagnostics. The potential use of practical standard CC methods as a benchmark theory is further confounded by the finding that CC and DFT methods usually have different signs of the error. We conclude that the available experimental data do not provide a justification for using conventional single-reference CC theory calculations to validate or test xc functionals for systems involving 3d transition metals.

112 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented benchmark results on Coupled cluster calculation of singlet excitation energies and the corresponding oscillator strength, and the results showed that both CC2 and CCSD are quite accurate and the difference to CC3 excitations energies is typically not larger than 0.2-0.3 eV.
Abstract: In this paper, benchmark results are presented on Coupled Cluster calculation of singlet excitation energies and the corresponding oscillator strength. The test set of Thiel et al. (Schreiber, M.; Silva, M. R. J.; Sauer, S. P. A.; Thiel, W. J. Chem. Phys. 2008, 128, 134110) has been used, and the earlier results have been extended by CC3 oscillator strength for the whole set, CC3 excitation energies for larger molecules, and CCSDT results for some small molecules. Accuracy of the members of the hierarchy CC2-CCSD-CC3-CCSDT has been analyzed. The results show that both CC2 and CCSD are quite accurate and the difference to CC3 excitations energies is typically not larger than 0.2-0.3 eV. While the mean deviation of the CC2 results is close to zero, CCSD systematically overshoots the CC3 results by about 0.2 eV. The standard deviation is, however, somewhat smaller for CCSD, that is, the latter method provides more systematic results. Still, only a few cases could be identified were the absolute value of the error is over 0.3 eV in case of CC2. The results are even better for CCSD, with the exception of uracil, where surprisingly large error of the excitation energies have been found for two of the four lowest n-π* transitions. Both LR (Linear Response) and EOM (Equation of Motion) style oscillator strengths have been calculated. The former is more accurate at both CC2 and CCSD levels, but the difference between them is only 1-2% in case of CCSD. The error of the CC2 oscillator strength are substantially larger than that of CCSD but qualitatively still correct.

111 citations


Network Information
Related Topics (5)
Ab initio
57.3K papers, 1.6M citations
94% related
Excited state
102.2K papers, 2.2M citations
88% related
Ground state
70K papers, 1.5M citations
88% related
Molecule
52.4K papers, 1.2M citations
85% related
Electronic structure
43.9K papers, 1.1M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023163
2022351
2021267
2020344
2019253
2018244