scispace - formally typeset
Search or ask a question
Topic

Coupled cluster

About: Coupled cluster is a research topic. Over the lifetime, 6280 publications have been published within this topic receiving 301055 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors introduced a database (HAB11) of electronic coupling matrix elements (Hab) for electron transfer in 11 π-conjugated organic homo-dimer cations.
Abstract: We introduce a database (HAB11) of electronic coupling matrix elements (Hab) for electron transfer in 11 π-conjugated organic homo-dimer cations. High-level ab inito calculations at the multireference configuration interaction MRCI+Q level of theory, n-electron valence state perturbation theory NEVPT2, and (spin-component scaled) approximate coupled cluster model (SCS)-CC2 are reported for this database to assess the performance of three DFT methods of decreasing computational cost, including constrained density functional theory (CDFT), fragment-orbital DFT (FODFT), and self-consistent charge density functional tight-binding (FODFTB). We find that the CDFT approach in combination with a modified PBE functional containing 50% Hartree-Fock exchange gives best results for absolute Hab values (mean relative unsigned error = 5.3%) and exponential distance decay constants β (4.3%). CDFT in combination with pure PBE overestimates couplings by 38.7% due to a too diffuse excess charge distribution, whereas the ec...

187 citations

Journal ArticleDOI
TL;DR: The importance of electron-correlation contributions to the DBOC is illustrated in the computation of the corresponding corrections for the reaction energy and activation barrier of the F + H2 --> FH + H reaction as well as of the atomization energy for trans-butadiene.
Abstract: Schemes for the analytic calculation of the diagonal Born-Oppenheimer correction (DBOC) are formulated and implemented for use with general single-reference configuration-interaction and coupled-cluster wave function models. Calculations are reported to demonstrate the convergence of the DBOC with respect to electron-correlation treatment and basis set as well as to investigate the size-consistency error in configuration-interaction calculations of the DBOC. The importance of electron-correlation contributions to the DBOC is illustrated in the computation of the corresponding corrections for the reaction energy and activation barrier of the F+H2→FH+H reaction as well as of the atomization energy for trans-butadiene.

186 citations

Journal ArticleDOI
TL;DR: Explicitly correlated MP2-F12 and CCSD(T)-F12 methods with orbital-pair-specific Slater-type geminals are proposed in this article, where the fixed amplitude ansatz of Ten-no is used, and different exponents of the Slater geminal functions can be chosen for core-core, core-valence, and valence-valences pairs.
Abstract: Explicitly correlated MP2-F12 and CCSD(T)-F12 methods with orbital-pair-specific Slater-type geminals are proposed. The fixed amplitude ansatz of Ten-no is used, and different exponents of the Slater geminal functions can be chosen for core–core, core–valence, and valence–valence pairs. This takes care of the different sizes of the correlation hole and leads to improved results when inner-shell orbitals are correlated. The complications and the extra computational cost as compared to corresponding calculations with a single geminal are minor. The improved accuracy of the method is demonstrated for spectroscopic properties of Br2, As2, Ga2, Cu2, GaCl, CuCl, and CuBr, where the d-orbitals are treated as core.

186 citations

Journal ArticleDOI
TL;DR: In this paper, the energy properties of the gas-phase SN2 reactions were studied using W1 and W2 ab initio computational thermochemistry methods, including CCSD coupled cluster methods, basis sets of up to spdfgh quality, extrapolations to the oneparticle basis set limit, and contributions of inner-shell correlation, scalar relativistic effects, and (where relevant) first-order spin−orbit coupling.
Abstract: The energetics of the gas-phase SN2 reactions Y- + CH3X- → CH3Y + X- (where X,Y = F,Cl,Br), were studied using (variants on) the recent W1 and W2 ab initio computational thermochemistry methods. These calculations involve CCSD and CCSD(T) coupled cluster methods, basis sets of up to spdfgh quality, extrapolations to the one-particle basis set limit, and contributions of inner-shell correlation, scalar relativistic effects, and (where relevant) first-order spin−orbit coupling. Our computational predictions are in excellent agreement with experimental data where these have small error bars; in a number of other instances reexamination of the experimental data may be in order. Our computed benchmark data (including cases for which experimental data are unavailable altogether) are used to assess the quality of a number of compound thermochemistry schemes such as G2 theory, G3 theory, and CBS-QB3, as well as a variety of density functional theory methods. Upon applying some modifications to the level of theory...

185 citations

Journal ArticleDOI
TL;DR: In this article, the potential energy surfaces and the nature of transition structures for the decomposition of three N8 isomers (octaazapentalene, azidopentazole, and diazidodiimide) into 4 N2 were investigated using ab initio methods.
Abstract: The potential energy surfaces and the nature of transition structures for the decomposition of three N8 isomers (octaazapentalene, azidopentazole, and diazidodiimide) into 4 N2 are investigated using ab initio methods. These isomers are all high-energy species, relative to molecular nitrogen, but are much lower in energy than the previously studied cubic structure. Second-order perturbation theory (MP2) predicts that the dissociation of octaazapentalene proceeds via isomerization to a linear molecule. The dissociation reaction of azidopentazole prefers ring breaking, at a cost of less than 20 kcal/mol, to breaking a bond in the side chain. The cis isomer of diazidodiimide is found to be slightly more stable than that of the trans isomer at the highest levels of theory used here. The coupled cluster (CCSD(T)) diazidodiimide dissociation barrier is computed to be about 20 kcal/mol. This barrier is only marginally sufficient to make this high energy density molecule metastable.

185 citations


Network Information
Related Topics (5)
Ab initio
57.3K papers, 1.6M citations
94% related
Excited state
102.2K papers, 2.2M citations
88% related
Ground state
70K papers, 1.5M citations
88% related
Molecule
52.4K papers, 1.2M citations
85% related
Electronic structure
43.9K papers, 1.1M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023163
2022351
2021267
2020344
2019253
2018244