scispace - formally typeset
Search or ask a question
Topic

Coupled cluster

About: Coupled cluster is a research topic. Over the lifetime, 6280 publications have been published within this topic receiving 301055 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the closed-shell coupled cluster theory restricted to single and double excitation operators (CCSD) is formulated in a basis of nonorthogonal local correlation functions.
Abstract: The closed‐shell coupled cluster theory restricted to single and double excitation operators (CCSD) is formulated in a basis of nonorthogonal local correlation functions. Excitations are made from localized molecular orbitals into subspaces (domains) of the local basis, which strongly reduces the number of amplitudes to be optimized. Furthermore, the correlation of distant electrons can be treated in a simplified way (e.g., by MP2) or entirely neglected. It is demonstrated for 20 molecules that the local correlation treatment recovers 98%–99% of the correlation energy obtained in the corresponding full CCSD calculation. Singles‐doubles configuration interac‐ tion (CISD), quadratic configuration interaction (QCISD), and Mo/ller–Plesset perturbation theory [MP2, MP3, MP4(SDQ)] are treated as special cases.

713 citations

Journal ArticleDOI
TL;DR: The new, linear-scaling DLPNO-CCSD(T) implementation typically is 7 times faster than the previous implementation and consumes 4 times less disk space for large three-dimensional systems, and the performance gains and memory savings are substantially larger.
Abstract: Domain based local pair natural orbital coupled cluster theory with single-, double-, and perturbative triple excitations (DLPNO-CCSD(T)) is a highly efficient local correlation method. It is known to be accurate and robust and can be used in a black box fashion in order to obtain coupled cluster quality total energies for large molecules with several hundred atoms. While previous implementations showed near linear scaling up to a few hundred atoms, several nonlinear scaling steps limited the applicability of the method for very large systems. In this work, these limitations are overcome and a linear scaling DLPNO-CCSD(T) method for closed shell systems is reported. The new implementation is based on the concept of sparse maps that was introduced in Part I of this series [P. Pinski, C. Riplinger, E. F. Valeev, and F. Neese, J. Chem. Phys. 143, 034108 (2015)]. Using the sparse map infrastructure, all essential computational steps (integral transformation and storage, initial guess, pair natural orbital construction, amplitude iterations, triples correction) are achieved in a linear scaling fashion. In addition, a number of additional algorithmic improvements are reported that lead to significant speedups of the method. The new, linear-scaling DLPNO-CCSD(T) implementation typically is 7 times faster than the previous implementation and consumes 4 times less disk space for large three-dimensional systems. For linear systems, the performance gains and memory savings are substantially larger. Calculations with more than 20 000 basis functions and 1000 atoms are reported in this work. In all cases, the time required for the coupled cluster step is comparable to or lower than for the preceding Hartree-Fock calculation, even if this is carried out with the efficient resolution-of-the-identity and chain-of-spheres approximations. The new implementation even reduces the error in absolute correlation energies by about a factor of two, compared to the already accurate previous implementation.

682 citations

Journal ArticleDOI
TL;DR: In this paper, the performance of density functional theory using the Perdew and Wang's exchange and correlation functionals (PW91) functional for the prediction of intermolecular interactionenergies is evaluated based on calculations on the neon, argon, methane, ethylene, and benzene dimers, as well as on 12 hydrogen bonded complexes.
Abstract: The performance of density functional theory using the Perdew and Wang’s exchange and correlation functionals (PW91) functional for the prediction of intermolecular interactionenergies is evaluated based on calculations on the neon, argon, methane, ethylene, and benzene dimers, as well as on 12 hydrogen bonded complexes (water, methanol, formic acid, hydrogen fluoride, ammonia, formamide dimers and water–methanol, water–dimethyl ether, water–formaldehyde, hydrogen cyanide–hydrogen fluoride, water–ammonia, water–formamide complexes). The results were compared with those obtained from Becke’s exchange and Lee, Yang, and Parr’s correlation functionals (BLYP), Becke’s 3 parameter functional combined with Lee, Yang, and Parr’s correlation functional (B3LYP), second order Mo/ller–Plesset perturbation (MP2), and coupled cluster calculations with single and double substitutions and with non-iterative triple corrections [CCSD(T)] calculations. The calculated interactionenergies show that the PW91 functional performs much better than the BLYP or B3LYP functionals. The error in the computed binding energies of the hydrogen bonded complexes is 20% in the worst case. The most demanding cases are the systems with large dispersion contributions to the binding energy, such as the benzene dimer. In contrast to the BLYP and B3LYP functionals which fail to account for dispersion, the PW91 functional at least partly recovers the attraction. The basis set dependence of the PW91 functionals is relatively small in contrast to the MP2 and CCSD(T) methods. Despite its occasional difficulties with dispersion interaction, the PW91 functional may be a viable alternative to the ab initio methods, certainly in situations where large complexes are being studied.

665 citations

Journal ArticleDOI
TL;DR: In this article, an algorithm for solving coupled-cluster (CC) equations which can handle any excitation is presented, combining the formalism of diagrammatic many-body perturbation theory and string-based configuration interaction (CI).
Abstract: The viability of treating higher excitations in coupled-cluster theory is discussed. An algorithm is presented for solving coupled-cluster (CC) equations which can handle any excitation. Our method combines the formalism of diagrammatic many-body perturbation theory and string-based configuration interaction (CI). CC equations are explicitly put down in terms of antisymmetrized diagrams and a general method is proposed for the factorization of the corresponding algebraic expressions. Contractions between cluster amplitudes and intermediates are evaluated by a string-based algorithm. In contrast to our previous developments [J. Chem. Phys. 113, 1359 (2000)] the operation count of this new method scales roughly as the (2n+2)nd power of the basis set size where n is the highest excitation in the cluster operator. As a by-product we get a completely new CI formalism which is effective for solving both truncated and full CI problems. Generalization for approximate CC models as well as multireference cases is also discussed.

663 citations

Journal ArticleDOI
TL;DR: A coupled cluster composite approach has been used to accurately determine the spectroscopic constants, bond dissociation energies, and heats of formation for the X1(2)II(3/2) states of the halogen oxides ClO, BrO, and IO, as well as their negative ions ClO-, BrO-, and IO-.
Abstract: A coupled cluster composite approach has been used to accurately determine the spectroscopic constants, bond dissociation energies, and heats of formation for the X12Π3/2 states of the halogen oxides ClO, BrO, and IO, as well as their negative ions ClO-, BrO-, and IO-. After determining the frozen core, complete basis set (CBS) limit CCSD(T) values, corrections were added for core−valence correlation, relativistic effects (scalar and spin−orbit), the pseudopotential approximation (BrO and IO), iterative connected triple excitations (CCSDT), and iterative quadruples (CCSDTQ). The final ab initio equilibrium bond lengths and harmonic frequencies for ClO and BrO differ from their accurate experimental values by an average of just 0.0005 A and 0.8 cm-1, respectively. The bond length of IO is overestimated by 0.0047 A, presumably due to an underestimation of molecular spin−orbit coupling effects. Spectroscopic constants for the spin−orbit excited X22Π1/2 states are also reported for each species. The predicted...

652 citations


Network Information
Related Topics (5)
Ab initio
57.3K papers, 1.6M citations
94% related
Excited state
102.2K papers, 2.2M citations
88% related
Ground state
70K papers, 1.5M citations
88% related
Molecule
52.4K papers, 1.2M citations
85% related
Electronic structure
43.9K papers, 1.1M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023163
2022351
2021267
2020344
2019253
2018244