scispace - formally typeset
Search or ask a question
Topic

Courant–Friedrichs–Lewy condition

About: Courant–Friedrichs–Lewy condition is a research topic. Over the lifetime, 1279 publications have been published within this topic receiving 31068 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper reviews and further develops a class of strong stability-preserving high-order time discretizations for semidiscrete method of lines approximations of partial differential equations, and builds on the study of the SSP property of implicit Runge--Kutta and multistep methods.
Abstract: In this paper we review and further develop a class of strong stability-preserving (SSP) high-order time discretizations for semidiscrete method of lines approximations of partial differential equations. Previously termed TVD (total variation diminishing) time discretizations, these high-order time discretization methods preserve the strong stability properties of first-order Euler time stepping and have proved very useful, especially in solving hyperbolic partial differential equations. The new developments in this paper include the construction of optimal explicit SSP linear Runge--Kutta methods, their application to the strong stability of coercive approximations, a systematic study of explicit SSP multistep methods for nonlinear problems, and the study of the SSP property of implicit Runge--Kutta and multistep methods.

2,199 citations

Journal ArticleDOI
TL;DR: Improved pressure boundary conditions of high order in time are introduced that minimize the effect of erroneous numerical boundary layers induced by splitting methods, and a new family of stiffly stable schemes is employed in mixed explicit/implicit time-intgration rules.

1,341 citations

Journal ArticleDOI
TL;DR: The spectral element method as discussed by the authors is a high-order variational method for the spatial approximation of elastic-wave equations, which can be used to simulate elastic wave propagation in realistic geological structures involving complieated free surface topography and material interfaces for two- and three-dimensional geometries.
Abstract: We present the spectral element method to simulate elastic-wave propagation in realistic geological structures involving complieated free-surface topography and material interfaces for two- and three-dimensional geometries. The spectral element method introduced here is a high-order variational method for the spatial approximation of elastic-wave equations. The mass matrix is diagonal by construction in this method, which drastically reduces the computational cost and allows an efficient parallel implementation. Absorbing boundary conditions are introduced in variational form to simulate unbounded physical domains. The time discretization is based on an energy-momentum conserving scheme that can be put into a classical explicit-implicit predictor/multi-corrector format. Long-term energy conservation and stability properties are illustrated as well as the efficiency of the absorbing conditions. The associated Courant condition behaves as Δ tC < O ( nel−1/nd N −2), with nel the number of elements, nd the spatial dimension, and N the polynomial order. In practice, a spatial sampling of approximately 5 points per wavelength is found to be very accurate when working with a polynomial degree of N = 8. The accuracy of the method is shown by comparing the spectral element solution to analytical solutions of the classical two-dimensional (2D) problems of Lamb and Garvin. The flexibility of the method is then illustrated by studying more realistic 2D models involving realistic geometries and complex free-boundary conditions. Very accurate modeling of Rayleigh-wave propagation, surface diffraction, and Rayleigh-to-body-wave mode conversion associated with the free-surface curvature are obtained at low computational cost. The method is shown to provide an efficient tool to study the diffraction of elastic waves by three-dimensional (3D) surface topographies and the associated local effects on strong ground motion. Complex amplification patterns, both in space and time, are shown to occur even for a gentle hill topography. Extension to a heterogeneous hill structure is considered. The efficient implementation on parallel distributed memory architectures will allow to perform real-time visualization and interactive physical investigations of 3D amplification phenomena for seismic risk assessment.

1,183 citations

Journal ArticleDOI
T. Namiki1
TL;DR: In this article, a new finite-difference time-domain (FDTD) algorithm is proposed in order to eliminate the Courant-Friedrich-Levy (CFL) condition restraint.
Abstract: In this paper, a new finite-difference time-domain (FDTD) algorithm is proposed in order to eliminate the Courant-Friedrich-Levy (CFL) condition restraint. The new algorithm is based on an alternating-direction implicit method. It is shown that the new algorithm is quite stable both analytically and numerically even when the CFL condition is not satisfied. Therefore, if the minimum cell size in the computational domain is required to be much smaller than the wavelength, this new algorithm is more efficient than conventional FDTD schemes in terms of computer resources such as central-processing-unit time. Numerical formulations are presented and simulation results are compared to those using the conventional FDTD method.

926 citations

Journal ArticleDOI
TL;DR: In this paper, a new formulation for enforcing incompressibility in Smoothed Particle Hydrodynamics (SPH) is introduced, which uses a fractional step with the velocity field integrated forward in time.

862 citations


Network Information
Related Topics (5)
Boundary value problem
145.3K papers, 2.7M citations
80% related
Partial differential equation
70.8K papers, 1.6M citations
79% related
Turbulence
112.1K papers, 2.7M citations
78% related
Boundary layer
64.9K papers, 1.4M citations
77% related
Finite element method
178.6K papers, 3M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202311
202218
202167
202062
201955
201863