scispace - formally typeset
Search or ask a question
Topic

Crack closure

About: Crack closure is a research topic. Over the lifetime, 28157 publications have been published within this topic receiving 588158 citations.


Papers
More filters
Journal ArticleDOI
26 Aug 2015-JOM
TL;DR: The fracture toughness and fatigue crack growth behavior of two as-vacuum arc cast high-entropy alloys (HEAs) (Al 0.2CrFeNiTi0.2 and Al CrFeNi2Cu) were determined in this paper.
Abstract: The fracture toughness and fatigue crack growth behavior of two as-vacuum arc cast high-entropy alloys (HEAs) (Al0.2CrFeNiTi0.2 and AlCrFeNi2Cu) were determined. A microstructure examination of both HEA alloys revealed a two-phase structure consisting of body-centered cubic (bcc) and face-centered cubic (fcc) phases. The notched and fatigue precracked toughness values were in the range of those reported in the literature for two-phase alloys but significantly less than recent reports on a single phase fcc-HEA that was deformation processed. Fatigue crack growth experiments revealed high fatigue thresholds that decreased significantly with an increase in load ratio, while Paris law slopes exhibited metallic-like behavior at low R with significant increases at high R. Fracture surface examinations revealed combinations of brittle and ductile/dimpled regions at overload, with some evidence of fatigue striations in the Paris law regime.

140 citations

Journal ArticleDOI
TL;DR: In this paper, a configurational forces approach is used to identify a "plasticity influence term" that describes crack tip shielding or anti-shielding due to plastic deformation in the body.
Abstract: This paper discusses the crack driving force in elastic–plastic materials, with particular emphasis on incremental plasticity. Using the configurational forces approach we identify a “plasticity influence term” that describes crack tip shielding or anti-shielding due to plastic deformation in the body. Standard constitutive models for finite strain as well as small strain incremental plasticity are used to obtain explicit expressions for the plasticity influence term in a two-dimensional setting. The total dissipation in the body is related to the near-tip and far-field J-integrals and the plasticity influence term. In the special case of deformation plasticity the plasticity influence term vanishes identically whereas for rigid plasticity and elastic-ideal plasticity the crack driving force vanishes. For steady state crack growth in incremental elastic–plastic materials, the plasticity influence term is equal to the negative of the plastic work per unit crack extension and the total dissipation in the body due to crack propagation and plastic deformation is determined by the far-field J-integral. For non-steady state crack growth, the plasticity influence term can be evaluated by post-processing after a conventional finite element stress analysis. Theory and computations are applied to a stationary crack in a C(T)-specimen to examine the effects of contained, uncontained and general yielding. A novel method is proposed for evaluating J-integrals under incremental plasticity conditions through the configurational body force. The incremental plasticity near-tip and far-field J-integrals are compared to conventional deformational plasticity and experimental J-integrals.

140 citations

Journal ArticleDOI
TL;DR: In this paper, the theory of linear elastic dynamic fracture mechanics for Heaviside loading of an isolated crack is employed to formulate the response to constant strain-rate loading of a single crack.
Abstract: The theory of linear elastic dynamic fracture mechanics for Heaviside loading of an isolated crack is employed to formulate the response to constant strain-rate loading of a single crack. Numerical integration of the Heaviside solution is shown to lead to fracture initiation stresses that are dependent upon the imposed strain rate. These fracture initiation stresses are also shown to be relatively independent of the crack size and crack shape. The results are used to explain the strain-rate dependent fracture stress observed in some rocks as being a structural response, rather than a basic material property.

140 citations

Journal ArticleDOI
TL;DR: In this article, a strip crack closure model based on the original Dugdale-Barenblatt model was investigated for various aspects of fatigue crack growth behavior, and a variable constraint factor was introduced into the model to account for the 3D effect at the crack tip.

140 citations

Journal ArticleDOI
TL;DR: In this paper, an experimental and analytical investigation into three-dimensional crack growth under biaxial compression is presented, where the growing crack is represented as a disk-like crack oriented parallel to the loading direction and opened by a pair of concentrated forces at its centre.

140 citations


Network Information
Related Topics (5)
Fracture mechanics
58.3K papers, 1.3M citations
96% related
Ultimate tensile strength
129.2K papers, 2.1M citations
85% related
Microstructure
148.6K papers, 2.2M citations
85% related
Grain boundary
70.1K papers, 1.5M citations
85% related
Finite element method
178.6K papers, 3M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023219
2022536
2021143
2020154
2019172
2018244