scispace - formally typeset
Search or ask a question
Topic

Critical infrastructure

About: Critical infrastructure is a research topic. Over the lifetime, 7476 publications have been published within this topic receiving 100742 citations.


Papers
More filters
Journal ArticleDOI
06 Apr 2017
TL;DR: The concept, metrics, and a quantitative framework for power system resilience evaluation are presented, with an emphasis on the new technologies such as topology reconfiguration, microgrids, and distribution automation and how to increase system resilience against extreme events.
Abstract: The electricity infrastructure is a critical lifeline system and of utmost importance to our daily lives. Power system resilience characterizes the ability to resist, adapt to, and timely recover from disruptions. The resilient power system is intended to cope with low probability, high risk extreme events including extreme natural disasters and man-made attacks. With an increasing awareness of such threats, the resilience of power systems has become a top priority for many countries. Facing the pressing urgency for resilience studies, the objective of this paper is to investigate the resilience of power systems. It summarizes practices taken by governments, utilities, and researchers to increase power system resilience. Based on a thorough review on the existing metrics system and evaluation methodologies, we present the concept, metrics, and a quantitative framework for power system resilience evaluation. Then, system hardening strategies and smart grid technologies as means to increase system resilience are discussed, with an emphasis on the new technologies such as topology reconfiguration, microgrids, and distribution automation; to illustrate how to increase system resilience against extreme events, we propose a load restoration framework based on smart distribution technology. The proposed method is applied on two test systems to validify its effectiveness. In the end, challenges to the power system resilience are discussed, including extreme event modeling, practical barriers, interdependence with other critical infrastructures, etc.

437 citations

Proceedings ArticleDOI
19 Oct 2011
TL;DR: This paper focuses on systematically identifying and classifying likely cyber attacks including cyber-induced cyber-physical attack son SCADA systems and highlights commonalities and important features of such attacks that define unique challenges posed to securingSCADA systems versus traditional Information Technology(IT) systems.
Abstract: Supervisory Control and Data Acquisition(SCADA) systems are deeply ingrained in the fabric of critical infrastructure sectors. These computerized real-time process control systems, over geographically dispersed continuous distribution operations, are increasingly subject to serious damage and disruption by cyber means due to their standardization and connectivity to other networks. However, SCADA systems generally have little protection from the escalating cyber threats. In order to understand the potential danger and to protect SCADA systems, in this paper, we highlight their difference from standard IT systems and present a set of security property goals. Furthermore, we focus on systematically identifying and classifying likely cyber attacks including cyber-induced cyber-physical attack son SCADA systems. Determined by the impact on control performance of SCADA systems, the attack categorization criteria highlights commonalities and important features of such attacks that define unique challenges posed to securing SCADA systems versus traditional Information Technology(IT) systems.

433 citations

Journal ArticleDOI
TL;DR: A novel sequential Monte-Carlo-based time-series simulation model is introduced to assess power system resilience and the concept of fragility curves is used for applying weather- and time-dependent failure probabilities to system's components.
Abstract: Electrical power systems have been traditionally designed to be reliable during normal conditions and abnormal but foreseeable contingencies. However, withstanding unexpected and less frequent severe situations still remains a significant challenge. As a critical infrastructure and in the face of climate change, power systems are more and more expected to be resilient to high-impact low-probability events determined by extreme weather phenomena. However, resilience is an emerging concept, and, as such, it has not yet been adequately explored in spite of its growing interest. On these bases, this paper provides a conceptual framework for gaining insights into the resilience of power systems, with focus on the impact of severe weather events. As quantifying the effect of weather requires a stochastic approach for capturing its random nature and impact on the different system components, a novel sequential Monte-Carlo-based time-series simulation model is introduced to assess power system resilience. The concept of fragility curves is used for applying weather- and time-dependent failure probabilities to system's components. The resilience of the critical power infrastructure is modeled and assessed within a context of system-of-systems that also include human response as a key dimension. This is illustrated using the IEEE 6-bus test system.

415 citations

Journal ArticleDOI
TL;DR: This paper presents a comprehensive study of representative works on Sensor-Cloud infrastructure, which will provide general readers an overview of the Sensor- Cloud platform including its definition, architecture, and applications.
Abstract: Nowadays, wireless sensor network (WSN) applications have been used in several important areas, such as healthcare, military, critical infrastructure monitoring, environment monitoring, and manufacturing. However, due to the limitations of WSNs in terms of memory, energy, computation, communication, and scalability, efficient management of the large number of WSNs data in these areas is an important issue to deal with. There is a need for a powerful and scalable high-performance computing and massive storage infrastructure for real-time processing and storing of the WSN data as well as analysis (online and offline) of the processed information under context using inherently complex models to extract events of interest. In this scenario, cloud computing is becoming a promising technology to provide a flexible stack of massive computing, storage, and software services in a scalable and virtualized manner at low cost. Therefore, in recent years, Sensor-Cloud infrastructure is becoming popular that can provide an open, flexible, and reconfigurable platform for several monitoring and controlling applications. In this paper, we present a comprehensive study of representative works on Sensor-Cloud infrastructure, which will provide general readers an overview of the Sensor-Cloud platform including its definition, architecture, and applications. The research challenges, existing solutions, and approaches as well as future research directions are also discussed in this paper.

396 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduce two new spatial optimization models called the r-interdiction median problem and the rinterdictation covering problem, which identify for a given service/supply system, that set of facilities that, if lost, would affect service delivery the most.
Abstract: Facilities and their services can be lost due to natural disasters as well as to intentional strikes, either by terrorism or an army. An intentional strike against a system is called interdiction. The geographical distribution of facilities in a supply or service system may be particularly vulnerable to interdiction, and the resulting impacts of the loss of one or more facilities may be substantial. Critical infrastructure can be defined as those elements of infrastructure that, if lost, could pose a significant threat to needed supplies (e.g., food, energy, medicines), services (e.g., police, fire, and EMS), and communication or a significant loss of service coverage or efficiency. In this article we introduce two new spatial optimization models called the r-interdiction median problem and the r-interdiction covering problem. Both models identify for a given service/supply system, that set of facilities that, if lost, would affect service delivery the most, depending upon the type of service protocol. These models can then be used to identify the most critical facility assets in a service/supply system. Results of both models applied to spatial data are also presented. Several solutions derived from these two interdiction models are presented in greater detail and demonstrate the degree to which the loss of one or more facilities disrupts system efficiencies or coverage. Recommendations for further research are also made.

380 citations


Network Information
Related Topics (5)
The Internet
213.2K papers, 3.8M citations
76% related
Software
130.5K papers, 2M citations
76% related
Empirical research
51.3K papers, 1.9M citations
75% related
Information system
107.5K papers, 1.8M citations
75% related
Corporate governance
118.5K papers, 2.7M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20243
2023265
2022682
2021359
2020415
2019443