scispace - formally typeset
Search or ask a question
Topic

Crypt

About: Crypt is a research topic. Over the lifetime, 1403 publications have been published within this topic receiving 65542 citations.


Papers
More filters
Journal ArticleDOI
14 May 2009-Nature
TL;DR: It is concluded that intestinal crypt–villus units are self-organizing structures, which can be built from a single stem cell in the absence of a non-epithelial cellular niche.
Abstract: The intestinal epithelium is the most rapidly self-renewing tissue in adult mammals. We have recently demonstrated the presence of about six cycling Lgr5(+) stem cells at the bottoms of small-intestinal crypts. Here we describe the establishment of long-term culture conditions under which single crypts undergo multiple crypt fission events, while simultanously generating villus-like epithelial domains in which all differentiated cell types are present. Single sorted Lgr5(+) stem cells can also initiate these cryptvillus organoids. Tracing experiments indicate that the Lgr5(+) stem-cell hierarchy is maintained in organoids. We conclude that intestinal cryptvillus units are self-organizing structures, which can be built from a single stem cell in the absence of a non-epithelial cellular niche.

5,193 citations

Journal ArticleDOI
25 Oct 2007-Nature
TL;DR: The expression pattern of Lgr5 suggests that it marks stem cells in multiple adult tissues and cancers, suggesting that it represents the stem cell of the small intestine and colon.
Abstract: The intestinal epithelium is the most rapidly self-renewing tissue in adult mammals. It is currently believed that four to six crypt stem cells reside at the +4 position immediately above the Paneth cells in the small intestine; colon stem cells remain undefined. Lgr5 (leucine-rich-repeat-containing G-protein-coupled receptor 5, also known as Gpr49) was selected from a panel of intestinal Wnt target genes for its restricted crypt expression. Here, using two knock-in alleles, we reveal exclusive expression of Lgr5 in cycling columnar cells at the crypt base. In addition, Lgr5 was expressed in rare cells in several other tissues. Using an inducible Cre knock-in allele and the Rosa26-lacZ reporter strain, lineage-tracing experiments were performed in adult mice. The Lgr5-positive crypt base columnar cell generated all epithelial lineages over a 60-day period, suggesting that it represents the stem cell of the small intestine and colon. The expression pattern of Lgr5 suggests that it marks stem cells in multiple adult tissues and cancers.

4,918 citations

Journal ArticleDOI
01 Oct 2010-Cell
TL;DR: Quantitative analysis shows that stem cell turnover follows a pattern of neutral drift dynamics, consistent with a model in which the resident stem cells double their numbers each day and stochastically adopt stem or TA fates.

1,708 citations

Journal ArticleDOI
TL;DR: The role of Tcf-4 in colon cancer was investigated in this paper, where the authors found that Tcf7/2//- mice die shortly after birth from colon cancer.
Abstract: Mutations of the genes encoding APC or beta-catenin in colon carcinoma induce the constitutive formation of nuclear beta-catenin/Tcf-4 complexes, resulting in activated transcription of Tcf target genes. To study the physiological role of Tcf-4 (which is encoded by the Tcf7/2 gene), we disrupted Tcf7/2 by homologous recombination. Tcf7/2-/- mice die shortly after birth. A single histopathological abnormality was observed. An apparently normal transition of intestinal endoderm into epithelium occurred at approximately embryonic day (E) 14.5. However, no proliferative compartments were maintained in the prospective crypt regions between the villi. As a consequence, the neonatal epithelium was composed entirely of differentiated, non-dividing villus cells. We conclude that the genetic program controlled by Tcf-4 maintains the crypt stem cells of the small intestine. The constitutive activity of Tcf-4 in APC-deficient human epithelial cells may contribute to their malignant transformation by maintaining stem-cell characteristics.

1,570 citations

Journal ArticleDOI
12 Mar 2004-Science
TL;DR: Mouse models show that bone morphogenetic protein (BMP)–4 expression occurs exclusively in the intravillus mesenchyme, and data indicate that intestinal BMP signaling represses de novo crypt formation and polyp growth.
Abstract: Little is known about the signaling mechanisms that determine the highly regular patterning of the intestinal epithelium into crypts and villi. With the use of mouse models, we show that bone morphogenetic protein (BMP)-4 expression occurs exclusively in the intravillus mesenchyme. Villus epithelial cells respond to the BMP signal. Inhibition of BMP signaling by transgenic expression of noggin results in the formation of numerous ectopic crypt units perpendicular to the crypt-villus axis. These changes phenocopy the intestinal histopathology of patients with the cancer predisposition syndrome juvenile polyposis (JP), including the frequent occurrence of intraepithelial neoplasia. Many JP cases are known to harbor mutations in BMP pathway genes. These data indicate that intestinal BMP signaling represses de novo crypt formation and polyp growth.

733 citations


Network Information
Related Topics (5)
Cell culture
133.3K papers, 5.3M citations
80% related
Cellular differentiation
90.9K papers, 6M citations
79% related
Signal transduction
122.6K papers, 8.2M citations
79% related
Immune system
182.8K papers, 7.9M citations
79% related
Apoptosis
115.4K papers, 4.8M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023211
2022258
202123
202020
201922
201825