Topic

# Cryptography

About: Cryptography is a(n) research topic. Over the lifetime, 37320 publication(s) have been published within this topic receiving 854507 citation(s). The topic is also known as: cryptographic engineering.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: An encryption method is presented with the novel property that publicly revealing an encryption key does not thereby reveal the corresponding decryption key.

Abstract: An encryption method is presented with the novel property that publicly revealing an encryption key does not thereby reveal the corresponding decryption key. This has two important consequences: (1) Couriers or other secure means are not needed to transmit keys, since a message can be enciphered using an encryption key publicly revealed by the intented recipient. Only he can decipher the message, since only he knows the corresponding decryption key. (2) A message can be “signed” using a privately held decryption key. Anyone can verify this signature using the corresponding publicly revealed encryption key. Signatures cannot be forged, and a signer cannot later deny the validity of his signature. This has obvious applications in “electronic mail” and “electronic funds transfer” systems. A message is encrypted by representing it as a number M, raising M to a publicly specified power e, and then taking the remainder when the result is divided by the publicly specified product, n, of two large secret primer numbers p and q. Decryption is similar; only a different, secret, power d is used, where e * d ≡ 1(mod (p - 1) * (q - 1)). The security of the system rests in part on the difficulty of factoring the published divisor, n.

14,611 citations

••

TL;DR: This paper suggests ways to solve currently open problems in cryptography, and discusses how the theories of communication and computation are beginning to provide the tools to solve cryptographic problems of long standing.

Abstract: Two kinds of contemporary developments in cryptography are examined. Widening applications of teleprocessing have given rise to a need for new types of cryptographic systems, which minimize the need for secure key distribution channels and supply the equivalent of a written signature. This paper suggests ways to solve these currently open problems. It also discusses how the theories of communication and computation are beginning to provide the tools to solve cryptographic problems of long standing.

14,068 citations

••

TL;DR: A theory of secrecy systems is developed on a theoretical level and is intended to complement the treatment found in standard works on cryptography.

Abstract: THE problems of cryptography and secrecy systems furnish an interesting application of communication theory.1 In this paper a theory of secrecy systems is developed. The approach is on a theoretical level and is intended to complement the treatment found in standard works on cryptography.2 There, a detailed study is made of the many standard types of codes and ciphers, and of the ways of breaking them. We will be more concerned with the general mathematical structure and properties of secrecy systems.

7,937 citations

••

19 Aug 2001TL;DR: This work proposes a fully functional identity-based encryption scheme (IBE) based on the Weil pairing that has chosen ciphertext security in the random oracle model assuming an elliptic curve variant of the computational Diffie-Hellman problem.

Abstract: We propose a fully functional identity-based encryption scheme (IBE). The scheme has chosen ciphertext security in the random oracle model assuming an elliptic curve variant of the computational Diffie-Hellman problem. Our system is based on the Weil pairing. We give precise definitions for secure identity based encryption schemes and give several applications for such systems.

6,596 citations

••

02 May 1999

TL;DR: A new trapdoor mechanism is proposed and three encryption schemes are derived : a trapdoor permutation and two homomorphic probabilistic encryption schemes computationally comparable to RSA, which are provably secure under appropriate assumptions in the standard model.

Abstract: This paper investigates a novel computational problem, namely the Composite Residuosity Class Problem, and its applications to public-key cryptography. We propose a new trapdoor mechanism and derive from this technique three encryption schemes : a trapdoor permutation and two homomorphic probabilistic encryption schemes computationally comparable to RSA. Our cryptosystems, based on usual modular arithmetics, are provably secure under appropriate assumptions in the standard model.

6,049 citations