scispace - formally typeset
Search or ask a question
Topic

Cryptography

About: Cryptography is a research topic. Over the lifetime, 37320 publications have been published within this topic receiving 854507 citations. The topic is also known as: cryptographic engineering.


Papers
More filters
Book ChapterDOI
22 May 2005
TL;DR: In this article, a new type of identity-based encryption called Fuzzy Identity-Based Encryption (IBE) was introduced, where an identity is viewed as set of descriptive attributes, and a private key for an identity can decrypt a ciphertext encrypted with an identity if and only if the identities are close to each other as measured by the set overlap distance metric.
Abstract: We introduce a new type of Identity-Based Encryption (IBE) scheme that we call Fuzzy Identity-Based Encryption. In Fuzzy IBE we view an identity as set of descriptive attributes. A Fuzzy IBE scheme allows for a private key for an identity, ω, to decrypt a ciphertext encrypted with an identity, ω ′, if and only if the identities ω and ω ′ are close to each other as measured by the “set overlap” distance metric. A Fuzzy IBE scheme can be applied to enable encryption using biometric inputs as identities; the error-tolerance property of a Fuzzy IBE scheme is precisely what allows for the use of biometric identities, which inherently will have some noise each time they are sampled. Additionally, we show that Fuzzy-IBE can be used for a type of application that we term “attribute-based encryption”. In this paper we present two constructions of Fuzzy IBE schemes. Our constructions can be viewed as an Identity-Based Encryption of a message under several attributes that compose a (fuzzy) identity. Our IBE schemes are both error-tolerant and secure against collusion attacks. Additionally, our basic construction does not use random oracles. We prove the security of our schemes under the Selective-ID security model.

3,610 citations

Proceedings ArticleDOI
Ran Canetti1
14 Oct 2001
TL;DR: The notion of universally composable security was introduced in this paper for defining security of cryptographic protocols, which guarantees security even when a secure protocol is composed of an arbitrary set of protocols, or more generally when the protocol is used as a component of a system.
Abstract: We propose a novel paradigm for defining security of cryptographic protocols, called universally composable security. The salient property of universally composable definitions of security is that they guarantee security even when a secure protocol is composed of an arbitrary set of protocols, or more generally when the protocol is used as a component of an arbitrary system. This is an essential property for maintaining security of cryptographic protocols in complex and unpredictable environments such as the Internet. In particular, universally composable definitions guarantee security even when an unbounded number of protocol instances are executed concurrently in an adversarially controlled manner, they guarantee non-malleability with respect to arbitrary protocols, and more. We show how to formulate universally composable definitions of security for practically any cryptographic task. Furthermore, we demonstrate that practically any such definition can be realized using known techniques, as long as only a minority of the participants are corrupted. We then proceed to formulate universally composable definitions of a wide array of cryptographic tasks, including authenticated and secure communication, key-exchange, public-key encryption, signature, commitment, oblivious transfer, zero knowledge and more. We also make initial steps towards studying the realizability of the proposed definitions in various settings.

3,439 citations

Book
10 Nov 1993
TL;DR: This document describes the construction of protocols and their use in the real world, as well as some examples of protocols used in the virtual world.
Abstract: CRYPTOGRAPHIC PROTOCOLS. Protocol Building Blocks. Basic Protocols. Intermediate Protocols. Advanced Protocols. Esoteric Protocols. CRYPTOGRAPHIC TECHNIQUES. Key Length. Key Management. Algorithm Types and Modes. Using Algorithms. CRYPTOGRAPHIC ALGORITHMS. Data Encryption Standard (DES). Other Block Ciphers. Other Stream Ciphers and Real Random-Sequence Generators. Public-Key Algorithms. Special Algorithms for Protocols. THE REAL WORLD. Example Implementations. Politics. SOURCE CODE.source Code. References.

3,432 citations

Book ChapterDOI
Cynthia Dwork1
25 Apr 2008
TL;DR: This survey recalls the definition of differential privacy and two basic techniques for achieving it, and shows some interesting applications of these techniques, presenting algorithms for three specific tasks and three general results on differentially private learning.
Abstract: Over the past five years a new approach to privacy-preserving data analysis has born fruit [13, 18, 7, 19, 5, 37, 35, 8, 32]. This approach differs from much (but not all!) of the related literature in the statistics, databases, theory, and cryptography communities, in that a formal and ad omnia privacy guarantee is defined, and the data analysis techniques presented are rigorously proved to satisfy the guarantee. The key privacy guarantee that has emerged is differential privacy. Roughly speaking, this ensures that (almost, and quantifiably) no risk is incurred by joining a statistical database. In this survey, we recall the definition of differential privacy and two basic techniques for achieving it. We then show some interesting applications of these techniques, presenting algorithms for three specific tasks and three general results on differentially private learning.

3,314 citations

Proceedings ArticleDOI
14 May 2000
TL;DR: This work describes the cryptographic schemes for the problem of searching on encrypted data and provides proofs of security for the resulting crypto systems, and presents simple, fast, and practical algorithms that are practical to use today.
Abstract: It is desirable to store data on data storage servers such as mail servers and file servers in encrypted form to reduce security and privacy risks. But this usually implies that one has to sacrifice functionality for security. For example, if a client wishes to retrieve only documents containing certain words, it was not previously known how to let the data storage server perform the search and answer the query, without loss of data confidentiality. We describe our cryptographic schemes for the problem of searching on encrypted data and provide proofs of security for the resulting crypto systems. Our techniques have a number of crucial advantages. They are provably secure: they provide provable secrecy for encryption, in the sense that the untrusted server cannot learn anything about the plaintext when only given the ciphertext; they provide query isolation for searches, meaning that the untrusted server cannot learn anything more about the plaintext than the search result; they provide controlled searching, so that the untrusted server cannot search for an arbitrary word without the user's authorization; they also support hidden queries, so that the user may ask the untrusted server to search for a secret word without revealing the word to the server. The algorithms presented are simple, fast (for a document of length n, the encryption and search algorithms only need O(n) stream cipher and block cipher operations), and introduce almost no space and communication overhead, and hence are practical to use today.

3,300 citations


Network Information
Related Topics (5)
Encryption
98.3K papers, 1.4M citations
96% related
Server
79.5K papers, 1.4M citations
88% related
Network packet
159.7K papers, 2.2M citations
87% related
Wireless ad hoc network
49K papers, 1.1M citations
86% related
Wireless sensor network
142K papers, 2.4M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20231,655
20223,810
20212,095
20202,435
20192,497