scispace - formally typeset
Search or ask a question
Topic

Crystallite

About: Crystallite is a research topic. Over the lifetime, 43231 publications have been published within this topic receiving 981094 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the average grain size of a log-normal distribution of grain sizes with tetrakaidecahedral shape is related to the average intercept size by a proportionality constant.
Abstract: A model is proposed which realistically characterizes the grain structure of polycrystalline ceramics. The average grain size of a log-normal distribution of grain sizes with tetrakaidecahedral (truncated octahedral) shape is related to the average intercept size by a proportionality constant. This result can be used to determine the average grain size of a sintered powder compact composed of nontextured grains which shows no discontinuous grain growth.

1,732 citations

Journal ArticleDOI
TL;DR: The controlled vapour phase synthesis of molybdenum disulphide atomic layers is reported and a fundamental mechanism for the nucleation, growth, and grain boundary formation in its crystalline monolayers is elucidated.
Abstract: Single-layered molybdenum disulphide with a direct bandgap is a promising two-dimensional material that goes beyond graphene for the next generation of nanoelectronics. Here, we report the controlled vapour phase synthesis of molybdenum disulphide atomic layers and elucidate a fundamental mechanism for the nucleation, growth, and grain boundary formation in its crystalline monolayers. Furthermore, a nucleation-controlled strategy is established to systematically promote the formation of large-area, single- and few-layered films. Using high-resolution electron microscopy imaging, the atomic structure and morphology of the grains and their boundaries in the polycrystalline molybdenum disulphide atomic layers are examined, and the primary mechanisms for grain boundary formation are evaluated. Grain boundaries consisting of 5- and 7- member rings are directly observed with atomic resolution, and their energy landscape is investigated via first-principles calculations. The uniformity in thickness, large grain sizes, and excellent electrical performance signify the high quality and scalable synthesis of the molybdenum disulphide atomic layers.

1,645 citations

Journal ArticleDOI
TL;DR: In this article, the photochemical redox potential of one carrier, as a function of the size of the crystal, has been studied in the case of a small number of electrons.
Abstract: Large semiconductor crystals have intrinsic electronic properties dependent upon the bulk band structure. As the crystal becomes small, a new regime is entered in which the electronic properties (excited states, ionization potential, electron affinity) should be strongly dependent upon the electron and hole in a confined space. We address the possibility of a shift in the photochemical redox potential of one carrier, as a function of crystallite size. As a semiquantitative guide, one might expect a shift on the order of h2/8em*R2 due to the kinetic energy of localization in the small crystallite. We model the elementary quantum mechanics of a charged crystallite using (a) the effective mass approximation, (b) an electrostatic potential for dielectric polarization, and (c) penetration of the carrier outside the crystallite in a cases of small effective mass. Shifts of several tenths of an eV appear possible in crystallites of diameter 50 A. The carrier charge density reside near the crystallite surface if ...

1,479 citations

Journal ArticleDOI
TL;DR: This controllable self-induced passivation technique for perovskite films is demonstrated, which enables their compositional change, and allows substantial enhancement in corresponding device performance.
Abstract: To improve the performance of the polycrystalline thin film devices, it requires a delicate control of its grain structures. As one of the most promising candidates among current thin film photovoltaic techniques, the organic/inorganic hybrid perovskites generally inherit polycrystalline nature and exhibit compositional/structural dependence in regard to their optoelectronic properties. Here, we demonstrate a controllable passivation technique for perovskite films, which enables their compositional change, and allows substantial enhancement in corresponding device performance. By releasing the organic species during annealing, PbI2 phase is presented in perovskite grain boundaries and at the relevant interfaces. The consequent passivation effects and underlying mechanisms are investigated with complementary characterizations, including scanning electron microscopy (SEM), X-ray diffraction (XRD), time-resolved photoluminescence decay (TRPL), scanning Kelvin probe microscopy (SKPM), and ultraviolet photoemi...

1,298 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
96% related
Oxide
213.4K papers, 3.6M citations
95% related
Carbon nanotube
109K papers, 3.6M citations
93% related
Raman spectroscopy
122.6K papers, 2.8M citations
93% related
Graphene
144.5K papers, 4.9M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,454
20225,073
20211,868
20201,871
20191,758
20181,796