Topic

# Cubic graph

About: Cubic graph is a research topic. Over the lifetime, 4158 publications have been published within this topic receiving 85231 citations.

##### Papers published on a yearly basis

##### Papers

More filters

••

5,331 citations

•

[...]

01 Jan 1998

TL;DR: This book presents an account of newer topics, including Szemer'edi's Regularity Lemma and its use; Shelah's extension of the Hales-Jewett Theorem; the precise nature of the phase transition in a random graph process; the connection between electrical networks and random walks on graphs; and the Tutte polynomial and its cousins in knot theory.

Abstract: The time has now come when graph theory should be part of the education of every serious student of mathematics and computer science, both for its own sake and to enhance the appreciation of mathematics as a whole. This book is an in-depth account of graph theory, written with such a student in mind; it reflects the current state of the subject and emphasizes connections with other branches of pure mathematics. The volume grew out of the author's earlier book, Graph Theory -- An Introductory Course, but its length is well over twice that of its predecessor, allowing it to reveal many exciting new developments in the subject. Recognizing that graph theory is one of several courses competing for the attention of a student, the book contains extensive descriptive passages designed to convey the flavor of the subject and to arouse interest. In addition to a modern treatment of the classical areas of graph theory such as coloring, matching, extremal theory, and algebraic graph theory, the book presents a detailed account of newer topics, including Szemer\'edi's Regularity Lemma and its use, Shelah's extension of the Hales-Jewett Theorem, the precise nature of the phase transition in a random graph process, the connection between electrical networks and random walks on graphs, and the Tutte polynomial and its cousins in knot theory. In no other branch of mathematics is it as vital to tackle and solve challenging exercises in order to master the subject. To this end, the book contains an unusually large number of well thought-out exercises: over 600 in total. Although some are straightforward, most of them are substantial, and others will stretch even the most able reader.

3,751 citations

••

TL;DR: It is proved that the Shannon zero-error capacity of the pentagon is \sqrt{5} and a well-characterized, and in a sense easily computable, function is introduced which bounds the capacity from above and equals the capacity in a large number of cases.

Abstract: It is proved that the Shannon zero-error capacity of the pentagon is \sqrt{5} . The method is then generalized to obtain upper bounds on the capacity of an arbitrary graph. A well-characterized, and in a sense easily computable, function is introduced which bounds the capacity from above and equals the capacity in a large number of cases. Several results are obtained on the capacity of special graphs; for example, the Petersen graph has capacity four and a self-complementary graph with n points and with a vertex-transitive automorphism group has capacity \sqrt{5} .

1,733 citations

••

TL;DR: A novel method for constructing wavelet transforms of functions defined on the vertices of an arbitrary finite weighted graph using the spectral decomposition of the discrete graph Laplacian L, based on defining scaling using the graph analogue of the Fourier domain.

1,681 citations