scispace - formally typeset
Search or ask a question

Showing papers on "Cuneate nucleus published in 2015"


Journal ArticleDOI
TL;DR: It is shown that reorganization of primary somatosensory area 3b is not accompanied with either an increase in intrinsic cortical connections between the hand and face representations, or any change in thalamocortical inputs to these areas.
Abstract: Brains of adult monkeys with chronic lesions of dorsal columns of spinal cord at cervical levels undergo large-scale reorganization. Reorganization results in expansion of intact chin inputs, which reactivate neurons in the deafferented hand representation in the primary somatosensory cortex (area 3b), ventroposterior nucleus of the thalamus and cuneate nucleus of the brainstem. A likely contributing mechanism for this large-scale plasticity is sprouting of axons across the hand-face border. Here we determined whether such sprouting takes place in area 3b. We first determined the extent of intrinsic corticocortical connectivity between the hand and the face representations in normal area 3b. Small amounts of neuroanatomical tracers were injected in these representations close to the electrophysiologically determined hand-face border. Locations of the labeled neurons were mapped with respect to the detailed electrophysiological somatotopic maps and histologically determined hand-face border revealed in sections of the flattened cortex stained for myelin. Results show that intracortical projections across the hand-face border are few. In monkeys with chronic unilateral lesions of the dorsal columns and expanded chin representation, connections across the hand-face border were not different compared with normal monkeys. Thalamocortical connections from the hand and face representations in the ventroposterior nucleus to area 3b also remained unaltered after injury. The results show that sprouting of intrinsic connections in area 3b or the thalamocortical inputs does not contribute to large-scale cortical plasticity. Significance statement: Long-term injuries to dorsal spinal cord in adult primates result in large-scale somatotopic reorganization due to which chin inputs expand into the deafferented hand region. Reorganization takes place in multiple cortical areas, and thalamic and medullary nuclei. To what extent this brain reorganization due to dorsal column injuries is related to axonal sprouting is not known. Here we show that reorganization of primary somatosensory area 3b is not accompanied with either an increase in intrinsic cortical connections between the hand and face representations, or any change in thalamocortical inputs to these areas. Axonal sprouting that causes reorganization likely takes place at subthalamic levels.

38 citations


Journal ArticleDOI
TL;DR: A small second‐order pathway to the cuneate nucleus that survives high cervical dorsal column lesions by traveling in the lateral funiculus is revealed, which could be important for cortical reactivation by hand afferents, and recovery of hand use.
Abstract: Dorsal column lesions at a high cervical level deprive the cuneate nucleus and much of the somatosensory system of its major cutaneous inputs. Over weeks of recovery, much of the hand representations in the contralateral cortex are reactivated. One possibility for such cortical reactivation by hand afferents is that preserved second-order spinal cord neurons reach the cuneate nucleus through pathways that circumvent the dorsal column lesions, contributing to cortical reactivation in an increasingly effective manner over time. To evaluate this possibility, we first injected anatomical tracers into the cuneate nucleus and plotted the distributions of labeled spinal cord neurons and fibers in control monkeys. Large numbers of neurons in the dorsal horn of the cervical spinal cord were labeled, especially ipsilaterally in lamina IV. Labeled fibers were distributed in the cuneate fasciculus and lateral funiculus. In three other squirrel monkeys, unilateral dorsal column lesions were placed at the cervical segment 4 level and tracers were injected into the ipsilateral cuneate nucleus. Two weeks later, a largely unresponsive hand representation in contralateral somatosensory cortex confirmed the effectiveness of the dorsal column lesion. However, tracer injections in the cuneate nucleus labeled only about 5% of the normal number of dorsal horn neurons, mainly in lamina IV, below the level of lesions. Our results revealed a small second-order pathway to the cuneate nucleus that survives high cervical dorsal column lesions by traveling in the lateral funiculus. This could be important for cortical reactivation by hand afferents, and recovery of hand use.

25 citations


Journal ArticleDOI
TL;DR: Evidence is provided of pathways linking upper cervical sensory afferents with CNS areas involved in autonomic and oromotor control, via the InM, which could explain the dysphagic and cardiorespiratory abnormalities which may accompany cervical dystonia and WAD.
Abstract: Sensory information arising from the upper neck is important in the reflex control of posture and eye position. It has also been linked to the autonomic control of the cardiovascular and respiratory systems. Whiplash associated disorders (WAD) and cervical dystonia, which involve disturbance to the neck region, can often present with abnormalities to the oromotor, respiratory and cardiovascular systems. We investigated the potential neural pathways underlying such symptoms. Simulating neck afferent activity by electrical stimulation of the second cervical nerve in a working heart brainstem preparation (WHBP) altered the pattern of central respiratory drive and increased perfusion pressure. Tracing central targets of these sensory afferents revealed projections to the intermedius nucleus of the medulla (InM). These anterogradely labelled afferents co-localised with parvalbumin and vesicular glutamate transporter 1 indicating that they are proprioceptive. Anterograde tracing from the InM identified projections to brain regions involved in respiratory, cardiovascular, postural and oro-facial behaviours--the neighbouring hypoglossal nucleus, facial and motor trigeminal nuclei, parabrachial nuclei, rostral and caudal ventrolateral medulla and nucleus ambiguus. In brain slices, electrical stimulation of afferent fibre tracts lateral to the cuneate nucleus monosynaptically excited InM neurones. Direct stimulation of the InM in the WHBP mimicked the response of second cervical nerve stimulation. These results provide evidence of pathways linking upper cervical sensory afferents with CNS areas involved in autonomic and oromotor control, via the InM. Disruption of these neuronal pathways could, therefore, explain the dysphagic and cardiorespiratory abnormalities which may accompany cervical dystonia and WAD.

20 citations


Proceedings ArticleDOI
22 Apr 2015
TL;DR: The results show a complex cortical response to CN stimuli and can guide future design of CN stimulus patterns to evoke salient percepts.
Abstract: High-performance neuroprostheses designed to reanimate a paralyzed limb following spinal cord injury must restore both movement and sensation. For the latter goal, we are developing a novel strategy focused on encode sensations using microstimulation of the cuneate nucleus (CN) of the brainstem. Here, we characterized the temporal dynamics of downstream cortical excitation and inhibition in response to CN microstimulation in a macaque. A single CN stimulus pulse evoked a fast (7 ms) excitatory response in primary somatosensory cortex (S1) followed by an inhibitory period lasting until 50 ms. The S1 response to a second CN pulse within this inhibitory period was drastically attenuated. Following the inhibition, S1 unit activity rebounded with a prolonged excitatory phase lasting until 800 ms. Within this second excitatory phase were rhythmic peaks of increased unit activity with an alpha-band frequency (8–14 Hz). The rhythmic excitation was specific for perigranular laminae and was stimulus-amplitude dependent. The results show a complex cortical response to CN stimuli and can guide future design of CN stimulus patterns to evoke salient percepts.

9 citations


Journal ArticleDOI
TL;DR: Immunohistochemical staining data for AMPA and GABAA/B receptor subunits of area 3b cortex and cuneate nucleus of adult squirrel monkeys one to five years after median and ulnar nerve transection suggest cortical plasticity continues to change over many months as receptive field reorganization occurs, while brainstem plasticity obtains a level of stable persistence by one month.

9 citations



Journal ArticleDOI
TL;DR: The number of correct responses on each classification task varied with the complexity of the experiment, but a decrease in the number of errors was observed when presenting the optimal length of the input vector, suggesting that the cuneate nucleus might function as an information processing center and not merely as a relay or filtering stage.