scispace - formally typeset
Search or ask a question

Showing papers on "Cuneate nucleus published in 2021"


Journal ArticleDOI
14 Apr 2021-eLife
TL;DR: In this paper, a detailed wiring diagram for the hand/forelimb-related transcortical circuit is presented, delineating a basic but complex set of cell-type-specific feedforward excitatory connections that selectively and extensively engage diverse intratelencephalic projection neurons, thereby polysynaptically linking subcortical input to cortical motor output to spinal cord.
Abstract: Sensory-guided limb control relies on communication across sensorimotor loops. For active touch with the hand, the longest loop is the transcortical continuation of ascending pathways, particularly the lemnisco-cortical and corticocortical pathways carrying tactile signals via the cuneate nucleus, ventral posterior lateral (VPL) thalamus, and primary somatosensory (S1) and motor (M1) cortices to reach corticospinal neurons and influence descending activity. We characterized excitatory connectivity along this pathway in the mouse. In the lemnisco-cortical leg, disynaptic cuneate→VPL→S1 connections excited mainly layer (L) 4 neurons. In the corticocortical leg, S1→M1 connections from L2/3 and L5A neurons mainly excited downstream L2/3 neurons, which excite corticospinal neurons. The findings provide a detailed new wiring diagram for the hand/forelimb-related transcortical circuit, delineating a basic but complex set of cell-type-specific feedforward excitatory connections that selectively and extensively engage diverse intratelencephalic projection neurons, thereby polysynaptically linking subcortical somatosensory input to cortical motor output to spinal cord.

18 citations


Journal ArticleDOI
TL;DR: This article found that the cuneate nucleus plays a key role in processing tactile information, and recorded the responses evoked in the CN to a battery of stimuli that have been extensively used to characterize tactile coding in both the periphery and cortex, including skin indentations, vibrations, random dot patterns and scanned edges.
Abstract: Tactile nerve fibers fall into a few classes that can be readily distinguished based on their spatiotemporal response properties. Because nerve fibers reflect local skin deformations, they individually carry ambiguous signals about object features. In contrast, cortical neurons exhibit heterogeneous response properties that reflect computations applied to convergent input from multiple classes of afferents, which confer to them a selectivity for behaviorally relevant features of objects. The conventional view is that these complex response properties arise within the cortex itself, implying that sensory signals are not processed to any significant extent in the two intervening structures-the cuneate nucleus (CN) and the thalamus. To test this hypothesis, we recorded the responses evoked in the CN to a battery of stimuli that have been extensively used to characterize tactile coding in both the periphery and cortex, including skin indentations, vibrations, random dot patterns, and scanned edges. We found that CN responses are more similar to their cortical counterparts than they are to their inputs: CN neurons receive input from multiple classes of nerve fibers, they have spatially complex receptive fields, and they exhibit selectivity for object features. Contrary to consensus, then, the CN plays a key role in processing tactile information.

12 citations


Journal ArticleDOI
TL;DR: In this paper, the proprioceptive responses of single cuneate nucleus (CN) neurons were recorded from three monkeys during active reaching and passive limb perturbation, and the distribution of their preferred directions was highly nonuniform and resembled that of muscle spindles within individual muscles, suggesting that CN neurons typically receive inputs from only a single muscle.
Abstract: The cuneate nucleus (CN) is among the first sites along the neuraxis where proprioceptive signals can be integrated, transformed, and modulated. The objective of the study was to characterize the proprioceptive representations in CN. To this end, we recorded from single CN neurons in three monkeys during active reaching and passive limb perturbation. We found that many neurons exhibited responses that were tuned approximately sinusoidally to limb movement direction, as has been found for other sensorimotor neurons. The distribution of their preferred directions (PDs) was highly nonuniform and resembled that of muscle spindles within individual muscles, suggesting that CN neurons typically receive inputs from only a single muscle. We also found that the responses of proprioceptive CN neurons tended to be modestly amplified during active reaching movements compared to passive limb perturbations, in contrast to cutaneous CN neurons whose responses were not systematically different in the active and passive conditions. Somatosensory signals thus seem to be subject to a "spotlighting" of relevant sensory information rather than uniform suppression as has been suggested previously.NEW & NOTEWORTHY The cuneate nucleus (CN) is the somatosensory gateway into the brain, and only recently has it been possible to record these signals from an awake animal. We recorded single CN neurons in monkeys. Proprioceptive CN neurons appear to receive input from very few muscles, and their sensitivity to movement changes reliably during reaching relative to passive arm perturbations. Sensitivity is generally increased, but not exclusively so, as though CN "spotlights" critical proprioceptive information during reaching.

12 citations


Journal ArticleDOI
TL;DR: In this article, the authors focus on the varied uses of proprioceptive input and the possible role of the cuneate nucleus (CN) in processing this information and find that these neurons have receptive fields that resemble single muscles.

7 citations


Posted ContentDOI
18 Mar 2021-bioRxiv
TL;DR: In this article, the proprioceptive responses of single cuneate nucleus (CN) neurons were recorded from three monkeys during active reaching and passive limb perturbation, and the distribution of their preferred directions was highly non-uniform and resembled that of muscle spindles within individual muscles, suggesting that CN neurons typically receive inputs from only a single muscle.
Abstract: The cuneate nucleus (CN) is among the first sites along the neuraxis where proprioceptive signals can be integrated, transformed, and modulated. The objective of the study was to characterize the proprioceptive representations in CN. To this end, we recorded from single CN neurons in three monkeys during active reaching and passive limb perturbation. We found that many neurons exhibited responses that were tuned approximately sinusoidally to limb movement direction, as has been found for other sensorimotor neurons. The distribution of their preferred directions (PDs) was highly non-uniform and resembled that of muscle spindles within individual muscles, suggesting that CN neurons typically receive inputs from only a single muscle. We also found that the responses of proprioceptive CN neurons tended to be modestly amplified during active reaching movements compared to passive limb perturbations, in contrast to cutaneous CN neurons whose responses were not systematically different in the active and passive conditions. Somatosensory signals thus seem to be subject to a “spotlighting” of relevant sensory information rather than uniform suppression as has been suggested previously.

6 citations


Journal ArticleDOI
TL;DR: A majority of thalamic neurons, regardless of location, respond to single pulse tactile inputs and generate spike responses to such tactile stimulation patterns that can be used to identify which of the inputs that was provided, at above-chance decoding performance levels.
Abstract: Whereas, there is data to support that cuneothalamic projections predominantly reach a topographically confined volume of the rat thalamus, the ventroposterior lateral (VPL) nucleus, recent findings show that cortical neurons that process tactile inputs are widely distributed across the neocortex. Since cortical neurons project back to the thalamus, the latter observation would suggest that thalamic neurons could contain information about tactile inputs, in principle regardless of where in the thalamus they are located. Here we use a previously introduced electrotactile interface for producing sets of highly reproducible tactile afferent spatiotemporal activation patterns from the tip of digit 2 and record neurons throughout widespread parts of the thalamus of the anesthetized rat. We find that a majority of thalamic neurons, regardless of location, respond to single pulse tactile inputs and generate spike responses to such tactile stimulation patterns that can be used to identify which of the inputs that was provided, at above-chance decoding performance levels. Thalamic neurons with short response latency times, compatible with a direct tactile afferent input via the cuneate nucleus, were typically among the best decoders. Thalamic neurons with longer response latency times as a rule were also found to be able to decode the digit 2 inputs, though typically at a lower decoding performance than the thalamic neurons with presumed direct cuneate inputs. These findings provide support for that tactile information arising from any specific skin area is widely available in the thalamocortical circuitry.

6 citations


Posted ContentDOI
19 Nov 2021-bioRxiv
TL;DR: In this article, the cuneate nucleus (CN) was found to be the first recipient of tactile nerve fibers along the dorsal columns medial lemniscal pathway during reach-to-grasp tasks.
Abstract: To achieve stable and precise movement execution, the sensorimotor system integrates exafferent sensory signals originating from interactions with the external world and reafferent signals caused by our own movements. This barrage of sensory information is regulated such that behaviorally relevant signals are boosted at the expense of irrelevant ones. For example, sensitivity to touch is reduced during movement - when cutaneous signals caused by skin stretch are expected and uninteresting - a phenomenon reflected in a decreased cutaneous responsiveness in thalamus and cortex. Some evidence suggests that movement gating of touch may originate from the cuneate nucleus (CN), the first recipient of signals from tactile nerve fibers along the dorsal columns medial lemniscal pathway. To test this possibility, we intermittently delivered mechanical pulses to the receptive fields (RFs) of identified cutaneous CN neurons as monkeys performed a reach-to-grasp task. As predicted, we found that the cutaneous responses of individual CN neurons were reduced during movement. However, this movement gating of cutaneous signals was observed for CN neurons with RFs on the arm but not those with RFs on the hand. We conclude that sensory gating occurs in the first processing stage along the somatosensory neuraxis and sculpts incoming signals according to their task relevance.

5 citations


Posted ContentDOI
05 Mar 2021-bioRxiv
TL;DR: In this paper, the authors find that tactile afferents from the hand recruit neurons in the brainstem cuneate nucleus whose activity is modulated by distinct classes of local inhibitory neurons.
Abstract: While dexterity relies on the constant transmission of sensory information, unchecked feedback can be disruptive to behavior. Yet how somatosensory feedback from the hands is regulated as it first enters the brain, and whether this modulation exerts any influence on movement, remain unclear. Leveraging molecular-genetic access in mice, we find that tactile afferents from the hand recruit neurons in the brainstem cuneate nucleus whose activity is modulated by distinct classes of local inhibitory neurons. Selective manipulation of these inhibitory circuits can suppress or enhance the transmission of tactile information, affecting behaviors that rely on movement of the hands. Investigating whether these local circuits are subject to top-down control, we identify distinct descending cortical pathways that innervate cuneate in a complementary pattern. Somatosensory cortical neurons target the core tactile region of cuneate, while a large rostral cortical population drives feed-forward inhibition of tactile transmission through an inhibitory shell. These findings identify a circuit basis for tactile feedback modulation, enabling the effective execution of dexterous movement.

5 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reported a case of intracerebral large B-cell lymphoma (IVLBCL) in a 54-year-old man who died three months after symptom onset.
Abstract: Intravascular large B-cell lymphoma (IVLBCL) is a rare form of lymphomas with poor prognosis, characterized by atypical lymphocytes selectively growing within the lumen of small or medium-sized vessels. Here, we report a case of intracerebral IVLBCL in a 54-year-old man who died three months after symptom onset. The diagnosis was made by postmortem pathological examination, based on the identification of multiple ischemic lesions, with small or medium-sized vessels filled with malignant B-cells, in the cerebral hemispheres, cerebellum, midbrain, and medulla oblongata, including the external cuneate nucleus and trigeminal spinal tract nucleus. Apart from necrotic lesions, specific histopathological search for occluded vessels in the other brain stem structures permitted identification of significant involvement of the cuneate nucleus, solitary tract nucleus, hypoglossal nucleus, and inferior olivary complex. Small vessels affected by IVLBCL were also found in the trunks of the oculomotor, trigeminal, glossopharyngeal, vagal, and hypoglossal nerves. These histopathological findings were consistent with some cranial nerve symptoms/signs ascertained during hospitalization, such as diplopia, dysphonia, and asymmetry/hypomotility of the palatal veil. The case study presented here reports novel insights on radiological, anatomical, and clinical correlations of the IVLBCL, including the possible involvement of nuclei and trunks of multiple cranial nerves. The reported findings may help clinicians in the early identification of this rapidly progressive disease that can be easily misdiagnosed, through integrated neuroradiological, neurological and neuropathological approaches.

4 citations


Journal ArticleDOI
TL;DR: In this article, the authors examined whether nischarin, an I1 receptor candidate protein, is expressed in the ventrolateral medulla, where cardiorespiratory centers are located.

3 citations


Journal ArticleDOI
TL;DR: In this paper, the tactile pathway from the periphery to the cortex is modeled from a population-level point of view, and three stages of the tactile processing pathway are modeled, i.e., the first-order neurons which innervate the cutaneous mechanoreceptors, the cuneate nucleus in the midbrain and the cortical neurons of the somatosensory area.
Abstract: To obtain deeper insights into the tactile processing pathway from a population-level point of view, we have modeled three stages of the tactile pathway from the periphery to the cortex in response to indentation and scanned edge stimuli at different orientations. Three stages in the tactile pathway are, (1) the first-order neurons which innervate the cutaneous mechanoreceptors, (2) the cuneate nucleus in the midbrain and (3) the cortical neurons of the somatosensory area. In the proposed network, the first layer mimics the spiking patterns generated by the primary afferents. These afferents have complex skin receptive fields. In the second layer, the role of lateral inhibition on projection neurons in the cuneate nucleus is investigated. The third layer acts as a biomimetic decoder consisting of pyramidal and cortical interneurons that correspond to heterogeneous receptive fields with excitatory and inhibitory sub-regions on the skin. In this way, the activity of pyramidal neurons is tuned to the specific edge orientations. By modifying afferent receptive field size, it is observed that the larger receptive fields convey more information about edge orientation in the first spikes of cortical neurons when edge orientation stimuli move across the patch of skin. In addition, the proposed spiking neural model can detect edge orientation at any location on the simulated mechanoreceptor grid with high accuracy. The results of this research advance our knowledge about tactile information processing and can be employed in prosthetic and bio-robotic applications.

Posted ContentDOI
29 Jul 2021-bioRxiv
TL;DR: This paper found that the responses of the Cuneate Nucleus (CN) to tactile stimuli are more similar to their S1 counterparts than they are to their inputs: CN neurons receive input from multiple sub-modalities, have spatially complex receptive fields, and exhibit selectivity for geometric features.
Abstract: In primates, the responses of individual neurons in primary somatosensory cortex (S1) reflect convergent input from multiple classes of nerve fibers and are selective for behaviorally relevant stimulus features. The conventional view is that these response properties reflect computations that are effected in cortex, implying that sensory signals are not meaningfully processed in the two intervening structures - the Cuneate Nucleus (CN) and the thalamus. To test this hypothesis, we recorded the responses evoked in CN to a battery of stimuli that have been extensively used to characterize tactile coding, including skin indentations, vibrations, random dot patterns, and scanned edges. We found that CN responses are more similar to their S1 counterparts than they are to their inputs: CN neurons receive input from multiple sub-modalities, have spatially complex receptive fields, and exhibit selectivity for geometric features. Thus, CN plays a key role in the processing of tactile information.

Journal ArticleDOI
Chia-Chi Liao1, Hui-Xin Qi1, Jamie L. Reed1, Ha-Seul Jeoung1, Jon H. Kaas1 
TL;DR: Findings indicated that corticocuneate inputs increase during the functional recovery, but their functional role is uncertain.
Abstract: Recovery of responses to cutaneous stimuli in the area 3b hand cortex of monkeys after dorsal column lesions (DCLs) in the cervical spinal cord relies on neural rewiring in the cuneate nucleus (Cu) over time. To examine whether the corticocuneate projections are modified during recoveries after the DCL, we injected cholera toxin subunit B into the hand representation in Cu to label the cortical neurons after various recovery times, and related results to the recovery of neural responses in the affected area 3b hand cortex. In normal New World monkeys, labeled neurons were predominately distributed in the hand regions of contralateral areas 3b, 3a, 1 and 2, parietal ventral (PV), secondary somatosensory cortex (S2), and primary motor cortex (M1), with similar distributions in the ipsilateral cortex in significantly smaller numbers. In monkeys with short-term recoveries, the area 3b hand neurons were unresponsive or responded weakly to touch on the hand, while the cortical labeling pattern was largely unchanged. After longer recoveries, the area 3b hand neurons remained unresponsive, or responded to touch on the hand or somatotopically abnormal parts, depending on the lesion extent. The distributions of cortical labeled neurons were much more widespread than the normal pattern in both hemispheres, especially when lesions were incomplete. The proportion of labeled neurons in the contralateral area 3b hand cortex was not correlated with the functional reactivation in the area 3b hand cortex. Overall, our findings indicated that corticocuneate inputs increase during the functional recovery, but their functional role is uncertain.

Journal ArticleDOI
TL;DR: In this article, the authors studied neuronal expression of three unfolded protein response (UPR) pathways in the human infant brainstem, hypothalamus, and cerebellum: activating transcription factor 6 (ATF6), phosphorylated inositol-requiring enzyme 1 (IRE1), and pPERK.
Abstract: Low orexin levels in the hypothalamus, and abnormal brainstem expression levels of many neurotransmitter and receptor systems in infants who died suddenly during a sleep period and diagnosed as sudden infant death syndrome (SIDS), may be linked to abnormal protein unfolding. We studied neuronal expression of the three unfolded protein response (UPR) pathways in the human infant brainstem, hypothalamus, and cerebellum: activating transcription factor 6 (ATF6), phosphorylated inositol-requiring enzyme 1 (IRE1), and phosphorylated protein-kinase (PKR)-like endoplasmic reticulum (ER) kinase (pPERK). Percentages of positively stained neurons were examined via immunohistochemistry and compared between SIDS (n = 28) and non-SIDS (n = 12) infant deaths. Further analysis determined the effects of the SIDS risk factors including cigarette smoke exposure, bed-sharing, prone sleeping, and an upper respiratory tract infection (URTI). Compared to non-SIDS, SIDS infants had higher ATF6 in the inferior olivary and hypoglossal nuclei of the medulla, higher pIRE1 in the dentate nucleus of the cerebellum, and higher pPERK in the cuneate nucleus and hypothalamus. Infants who were found prone had higher ATF6 in the hypoglossal and the locus coeruleus of the pons. Infants exposed to cigarette smoke had higher ATF6 in the vestibular and cuneate nuclei of the medulla. Infants who were bed-sharing had higher pPERK in the dorsal raphe nuclei of the pons and the Purkinje cells of the cerebellum. This study indicates that subgroups of SIDS infants, defined by risk exposure, had activation of the UPR in several nuclei relating to proprioception and motor control, suggesting that the UPR underlies the neuroreceptor system changes responsible for these physiological functions, leading to compromise in the pathogenesis of SIDS.

Posted ContentDOI
24 Jan 2021-bioRxiv
TL;DR: In this paper, a detailed wiring diagram for the hand/forelimb-related transcortical circuit is presented, delineating a basic but complex set of cell-type-specific feedforward excitatory connections that selectively and extensively engage diverse intratelencephalic projection neurons, thereby polysynaptically linking subcortical input to cortical motor output to spinal cord.
Abstract: Sensory-guided limb control relies on communication across sensorimotor loops. For active touch with the hand, the longest loop is the transcortical continuation of ascending pathways, particularly the lemnisco-cortical and corticocortical pathways carrying tactile signals via the cuneate nucleus, ventral posterior lateral (VPL) thalamus, and primary somatosensory (S1) and motor (M1) cortices to reach corticospinal neurons and influence descending activity. We characterized excitatory connectivity along this pathway in the mouse. In the lemnisco-cortical leg, disynaptic cuneate→VPL→S1 connections excited mainly layer (L) 4 neurons. In the corticocortical leg, S1→M1 connections from L2/3 and L5A neurons mainly excited downstream L2/3 neurons, which excite corticospinal neurons. The findings provide a detailed new wiring diagram for the hand/forelimb-related transcortical circuit, delineating a basic but complex set of cell-type-specific feedforward excitatory connections that selectively and extensively engage diverse intratelencephalic projection neurons, thereby polysynaptically linking subcortical somatosensory input to cortical motor output to spinal cord.