scispace - formally typeset
Search or ask a question
Topic

Cuneate nucleus

About: Cuneate nucleus is a research topic. Over the lifetime, 614 publications have been published within this topic receiving 24859 citations. The topic is also known as: cuneate nucleus of spinal cord.


Papers
More filters
Journal ArticleDOI
TL;DR: The cerebellar projection of the external cuneate nucleus and the adjoining rostral part of the internal cunesate nucleus were investigated by means of anterograde transport of tritiated leucine and no evidence was found for a termination of mossy fiber collaterals in the central cerebellary nuclei.
Abstract: The cerebellar projection of the external cuneate nucleus and the adjoining rostral part of the internal cuneate nucleus were investigated by means of anterograde transport of tritiated leucine. The cuneocerebellar tract terminates as mossy fiber rosettes in the granular layer. The termination area has a more or less spherical form with its centre at the ipsilateral side. It comprises the anterior and posterior vermes bilaterally and the ipsilateral hemispheral parts of the anterior and simple lobules, the medial aspect of the ansiform lobule and the paramedian lobule. Within this area the mossy fiber terminals are arranged in continuous sagittal strips, some of them clearly separated from one another. The strips were found in the cerebellar modules A-D. Concomitant bilateral projections to several subdivisions of the inferior olive were found. Some of these provide the anatomical substrate for the simultaneous activation of a number of mossy and climbing fiber zones observed in the anterior lobe following stimulation of different forelimb nerves. No evidence was found for a termination of mossy fiber collaterals in the central cerebellar nuclei.

101 citations

Journal ArticleDOI
TL;DR: The successive degeneration technique was used to demonstrate the existence of non-primary afferents to the cuneate nucleus in the dorsal funiculus of the brachial cord of cat and provides a basis for the re-interpretation of several functional aspects concerning integration of impulses through the dorsal column nuclei.

101 citations

Journal ArticleDOI
TL;DR: In cats under Dial, repetitive stimulation of primary afferent fibers evokes a negative potential change in the cuneate nucleus or the dorsal horn of the lumbar spinal cord, which is associated with a clear increase in extracellular K+ activity, recorded by K+ selective microelectrodes.
Abstract: In cats under Dial, repetitive stimulation of primary afferent fibers evokes a negative potential change in the cuneate nucleus or the dorsal horn of the lumbar spinal cord, which is associated with a clear increase in extracellular K+ activity, recorded by K+ selective microelectrodes.

100 citations

Journal ArticleDOI
TL;DR: A brain circuit has been proposed in which the cuneiform nucleus has a central position and may serve a passive coping strategy to novel, painful or threatening stimuli during which the animals show orientation/attention or freezing behavior accompanied by a bradycardiac and pressor response.
Abstract: The aim of the present study was to explore the neuroanatomic network that underlies the cardiovascular responses of reticular formation origin in the region of the cuneiform nucleus (CNF). The study was performed in urethane anesthetized male Wistar rats. The left iliac artery was supplied with a catheter for the measurement of systemic blood pressure. Low intensity electrical stimulation of the mesencephalic reticular formation (MRF) in the vicinity of the CNF always resulted in pressor and bradycardiac responses, whereas stimulation in the parabrachial nucleus (PB) and Kolliker-Fuse nucleus (KF) led to a pressor response and a small tachycardiac response. The cuneiform area may be placed in the center of a circuit that serves a specific autonomic response pattern to stress: parallel activation of the sympathetic (pressor response) and parasympathetic limb (bradycardia). The efferent connections of the effective stimulation sites in the MRF and the CNF area, were investigated by anterograde tracing with the lectin Phaseolus vulgaris leucoagglutine (PHA-L). The CNF sends descending fibers to the gigantocellular reticular nuclei (GI), the motor nucleus of the vagus (DMNV) and nucleus tractus solitarius (NTS). These projections are probably involved in the bradycardiac response to stimulation. The descending pathway to the NTS/DMNV and GI may therefore be the parasympathetic limb of the circuit. Furthermore, the CNF sends ascending fibers to limbic forebrain areas and descending fibers to the PB-KF complex. The KF in its turn projects to the rostroventrolateral medullary nucleus (RVLM) and the intermediolateral cell column (IML). These latter projections are partly involved in producing the pressor response and thereby represent the sympathetic limb of the circuit. Accordingly, the transection of the descending fibers from the CNF to the PB-KF complex resulted in a decreased pressor and an increased bradycardiac response. This suggests that a baroreceptor reflex-induced bradycardia which results from blood pressure increase can be excluded as the origin of the stimulation-induced bradycardia, and that the pressor and bradycardiac responses are two independent moieties. It cannot be excluded that ascending fibers from the CNF are also involved in producing the pressor response. On the basis of the present physiological and neuroanatomical study, a brain circuit has been proposed in which the cuneiform nucleus has a central position. The described brain circuit may serve a passive coping strategy to novel, painful or threatening stimuli during which the animals show orientation/attention or freezing behavior accompanied by a bradycardiac and pressor response.

99 citations

Journal ArticleDOI
TL;DR: The retrograde labeling seen after injection of tracer into the midbrain terminal areas showed that the cells of origin were located mainly in the rostral and caudal parts of the dorsal column nuclei, whereas the middle cell nest neurons were unlabeled, thus supporting previous observations that the neurons projecting toThe midbrain constitute a population separate from that projecting to the thalamus.

99 citations


Network Information
Related Topics (5)
Neuron
22.5K papers, 1.3M citations
83% related
Hippocampal formation
30.6K papers, 1.7M citations
82% related
Glutamate receptor
33.5K papers, 1.8M citations
82% related
Cerebral cortex
21.1K papers, 1.2M citations
82% related
NMDA receptor
24.2K papers, 1.3M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20234
20222
202115
20204
20195
20186