scispace - formally typeset
Search or ask a question

Showing papers on "Curcumin published in 2007"


Journal ArticleDOI
TL;DR: Enhanced bioavailability of curcumin in the near future is likely to bring this promising natural product to the forefront of therapeutic agents for treatment of human disease.
Abstract: Curcumin, a polyphenolic compound derived from dietary spice turmeric, possesses diverse pharmacologic effects including anti-inflammatory, antioxidant, antiproliferative and antiangiogenic activities. Phase I clinical trials have shown that curcumin is safe even at high doses (12 g/day) in humans but exhibit poor bioavailability. Major reasons contributing to the low plasma and tissue levels of curcumin appear to be due to poor absorption, rapid metabolism, and rapid systemic elimination. To improve the bioavailability of curcumin, numerous approaches have been undertaken. These approaches involve, first, the use of adjuvant like piperine that interferes with glucuronidation; second, the use of liposomal curcumin; third, curcumin nanoparticles; fourth, the use of curcumin phospholipid complex; and fifth, the use of structural analogues of curcumin (e.g., EF-24). The latter has been reported to have a rapid absorption with a peak plasma half-life. Despite the lower bioavailability, therapeutic efficacy of...

4,275 citations


Book ChapterDOI
TL;DR: Curcumin has been shown to exhibit antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, and anticancer activities and thus has a potential against various malignant diseases, diabetes, allergies, arthritis, Alzheimer's disease, and other chronic illnesses.
Abstract: Turmeric, derived from the plant Curcuma longa, is a gold-colored spice commonly used in the Indian subcontinent, not only for health care but also for the preservation of food and as a yellow dye for textiles. Curcumin, which gives the yellow color to turmeric, was first isolated almost two centuries ago, and its structure as diferuloylmethane was determined in 1910. Since the time of Ayurveda (1900 Bc) numerous therapeutic activities have been assigned to turmeric for a wide variety of diseases and conditions, including those of the skin, pulmonary, and gastrointestinal systems, aches, pains, wounds, sprains, and liver disorders. Extensive research within the last half century has proven that most of these activities, once associated with turmeric, are due to curcumin. Curcumin has been shown to exhibit antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, and anticancer activities and thus has a potential against various malignant diseases, diabetes, allergies, arthritis, Alzheimer's disease, and other chronic illnesses. These effects are mediated through the regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other enzymes. Curcumin exhibits activities similar to recently discovered tumor necrosis factor blockers (e.g., HUMIRA, REMICADE, and ENBREL), a vascular endothelial cell growth factor blocker (e.g., AVASTIN), human epidermal growth factor receptor blockers (e.g., ERBITUX, ERLOTINIB, and GEFTINIB), and a HER2 blocker (e.g., HERCEPTIN). Considering the recent scientific bandwagon that multitargeted therapy is better than monotargeted therapy for most diseases, curcumin can be considered an ideal "Spice for Life".

1,467 citations


Journal ArticleDOI
TL;DR: Nanocurcumin provides an opportunity to expand the clinical repertoire of this efficacious agent by enabling ready aqueous dispersion and demonstrating comparable in vitro therapeutic efficacy to free curcumin against a panel of human pancreatic cancer cell lines.
Abstract: Curcumin, a yellow polyphenol extracted from the rhizome of turmeric (Curcuma longa), has potent anti-cancer properties as demonstrated in a plethora of human cancer cell line and animal carcinogenesis models. Nevertheless, widespread clinical application of this relatively efficacious agent in cancer and other diseases has been limited due to poor aqueous solubility, and consequently, minimal systemic bioavailability. Nanoparticle-based drug delivery approaches have the potential for rendering hydrophobic agents like curcumin dispersible in aqueous media, thus circumventing the pitfalls of poor solubility. We have synthesized polymeric nanoparticle encapsulated formulation of curcumin – nanocurcumin – utilizing the micellar aggregates of cross-linked and random copolymers of N-isopropylacrylamide (NIPAAM), with N-vinyl-2-pyrrolidone (VP) and poly(ethyleneglycol)monoacrylate (PEG-A). Physico-chemical characterization of the polymeric nanoparticles by dynamic laser light scattering and transmission electron microscopy confirms a narrow size distribution in the 50 nm range. Nanocurcumin, unlike free curcumin, is readily dispersed in aqueous media. Nanocurcumin demonstrates comparable in vitro therapeutic efficacy to free curcumin against a panel of human pancreatic cancer cell lines, as assessed by cell viability and clonogenicity assays in soft agar. Further, nanocurcumin's mechanisms of action on pancreatic cancer cells mirror that of free curcumin, including induction of cellular apoptosis, blockade of nuclear factor kappa B (NFκB) activation, and downregulation of steady state levels of multiple pro-inflammatory cytokines (IL-6, IL-8, and TNFα). Nanocurcumin provides an opportunity to expand the clinical repertoire of this efficacious agent by enabling ready aqueous dispersion. Future studies utilizing nanocurcumin are warranted in pre-clinical in vivo models of cancer and other diseases that might benefit from the effects of curcumin.

1,051 citations


Book ChapterDOI
TL;DR: Both antioxidant and anti-inflammatory properties of curcumin are described, the mode of action ofCurcumin, and its therapeutic usage against different pathological conditions are described.
Abstract: Curcumin, a yellow pigment from Curcuma longa, is a major component of turmeric and is commonly used as a spice and food-coloring agent It is also used as a cosmetic and in some medical preparations The desirable preventive or putative therapeutic properties of curcumin have also been considered to be associated with its antioxidant and anti-inflammatory properties Because free-radical-mediated peroxidation of membrane lipids and oxidative damage of DNA and proteins are believed to be associated with a variety of chronic pathological complications such as cancer, atherosclerosis, and neurodegenerative diseases, curcumin is thought to play a vital role against these pathological conditions The anti-inflammatory effect of curcumin is most likely mediated through its ability to inhibit cyclooxygenase-2 (COX-2), lipoxygenase (LOX), and inducible nitric oxide synthase (iNOS) COX-2, LOX, and iNOS are important enzymes that mediate inflammatory processes Improper upregulation of COX-2 and/or iNOS has been associated with the pathophysiology of certain types of human cancer as well as inflammatory disorders Because inflammation is closely linked to tumor promotion, curcumin with its potent anti-inflammatory property is anticipated to exert chemopreventive effects on carcinogenesis Hence, the past few decades have witnessed intense research devoted to the antioxidant and anti-inflammatory properties of curcumin In this review, we describe both antioxidant and anti-inflammatory properties of curcumin, the mode of action of curcumin, and its therapeutic usage against different pathological conditions

1,000 citations


Journal ArticleDOI
TL;DR: It is proved that curcumin-phospholipid complex has better hepatoprotective activity, owe to its superior antioxidant property, than freeCurcumin at the same dose level.

745 citations


Journal ArticleDOI
TL;DR: Data suggest that curcumin reverses existing amyloid pathology and associated neurotoxicity in a mouse model of AD, which could lead to more effective clinical therapies for the prevention of oxidative stress, inflammation and neurotoxicity associated with AD.
Abstract: Alzheimer’s disease (AD) is characterized by senile plaques and neurodegeneration although the neurotoxic mechanisms have not been completely elucidated. It is clear that both oxidative stress and inflammation play an important role in the illness. The compound curcumin, with a broad spectrum of anti-oxidant, anti-inflammatory, and anti-fibrilogenic activities may represent a promising approach for preventing or treating AD. Curcumin is a small fluorescent compound that binds to amyloid deposits. In the present work we used in vivo multiphoton microscopy (MPM) to demonstrate that curcumin crosses the blood–brain barrier and labels senile plaques and cerebrovascular amyloid angiopathy (CAA) in APPswe/PS1dE9 mice. Moreover, systemic treatment of mice with curcumin for 7 days clears and reduces existing plaques, as monitored with longitudinal imaging, suggesting a potent disaggregation effect. Curcumin also led to a limited, but significant reversal of structural changes in dystrophic dendrites, including abnormal curvature and dystrophy size. Together, these data suggest that curcumin reverses existing amyloid pathology and associated neurotoxicity in a mouse model of AD. This approach could lead to more effective clinical therapies for the prevention of oxidative stress, inflammation and neurotoxicity associated with AD.

614 citations


Journal ArticleDOI
TL;DR: The results suggest that curcumin potentiates the antitumor effects of gemcitabine in pancreatic cancer by suppressing proliferation, angiogenesis, NF-kappaB, and NF- kappaB-regulated gene products.
Abstract: Gemcitabine is currently the best treatment available for pancreatic cancer, but the disease develops resistance to the drug over time. Agents that can either enhance the effects of gemcitabine or overcome chemoresistance to the drug are needed for the treatment of pancreatic cancer. Curcumin, a component of turmeric (Curcuma longa), is one such agent that has been shown to suppress the transcription factor nuclear factor-kappaB (NF-kappaB), which is implicated in proliferation, survival, angiogenesis, and chemoresistance. In this study, we investigated whether curcumin can sensitize pancreatic cancer to gemcitabine in vitro and in vivo. In vitro, curcumin inhibited the proliferation of various pancreatic cancer cell lines, potentiated the apoptosis induced by gemcitabine, and inhibited constitutive NF-kappaB activation in the cells. In vivo, tumors from nude mice injected with pancreatic cancer cells and treated with a combination of curcumin and gemcitabine showed significant reductions in volume (P = 0.008 versus control; P = 0.036 versus gemcitabine alone), Ki-67 proliferation index (P = 0.030 versus control), NF-kappaB activation, and expression of NF-kappaB-regulated gene products (cyclin D1, c-myc, Bcl-2, Bcl-xL, cellular inhibitor of apoptosis protein-1, cyclooxygenase-2, matrix metalloproteinase, and vascular endothelial growth factor) compared with tumors from control mice treated with olive oil only. The combination treatment was also highly effective in suppressing angiogenesis as indicated by a decrease in CD31(+) microvessel density (P = 0.018 versus control). Overall, our results suggest that curcumin potentiates the antitumor effects of gemcitabine in pancreatic cancer by suppressing proliferation, angiogenesis, NF-kappaB, and NF-kappaB-regulated gene products.

583 citations


Journal ArticleDOI
TL;DR: It is demonstrated that different analogs of curcumin present in turmeric exhibit variable anti-inflammatory and anti-proliferative activities, which do not correlate with their ability to modulate the ROS status.
Abstract: Curcumin, a component of turmeric (Curcuma longa), has been shown to exhibit chemopreventive activity. Whether analogs of curcumin (Cur), such as demethoxycurcumin (DMC), bisdemethoxycurcumin (BDMC), tetrahydrocurcumin (THC) and turmerones, modulate inflammatory signaling and cell proliferation signaling to same extent as curcumin was investigated. The results indicate that the relative potency for suppression of tumor necrosis factor (TNF)-induced nuclear factor-kappaB (NF-kappaB) activation was Cur > DMC > BDMC; thus suggesting the critical role of methoxy groups on the phenyl ring. THC, which lacks the conjugated bonds in the central seven-carbon chain, was completely inactive for suppression of the transcription factor. Turmerones also failed to inhibit TNF-induced NF-kappaB activation. The suppression of NF-kappaB activity correlated with inhibition of NF-kappaB reporter activity and with down-regulation of cyclooxygenase-2, cyclin D1 and vascular endothelial growth factor, all regulated by NF-kappaB. In contrast to NF-kappaB activity, the suppression of proliferation of various tumor cell lines by Cur, DMC and BDMC was found to be comparable; indicating the methoxy groups play minimum role in the growth-modulatory effects of curcumin. THC and turmerones were also found to be active in suppression of cell growth but to a much lesser extent than curcumin, DMC and BDMC. Whether suppression of NF-kappaB or cell proliferation, no relationship of any of the curcuminoid was found with reactive oxygen species (ROS) production. Overall, our results demonstrated that different analogs of curcumin present in turmeric exhibit variable anti-inflammatory and anti-proliferative activities, which do not correlate with their ability to modulate the ROS status.

580 citations


Journal ArticleDOI
TL;DR: Curcumin’s reported beneficial effects in arthritis, allergy, asthma, atherosclerosis, heart disease, Alzheimer's disease, diabetes, and cancer might be due in part to its ability to modulate the immune system, and these findings warrant further consideration of curcumin as a therapy for immune disorders.
Abstract: Curcumin (diferuloylmethane) is an orange-yellow component of turmeric (Curcuma longa), a spice often found in curry powder. Traditionally known for its an antiinflammatory effects, curcumin has been shown in the last two decades to be a potent immunomodulatory agent that can modulate the activation of T cells, B cells, macrophages, neutrophils, natural killer cells, and dendritic cells. Curcumin can also downregulate the expression of various proinflammatory cytokines including TNF, IL-1, IL-2, IL-6, IL-8, IL-12, and chemokines, most likely through inactivation of the transcription factor NF-κB. Interestingly, however, curcumin at low doses can also enhance antibody responses. This suggests that curcumin’s reported beneficial effects in arthritis, allergy, asthma, atherosclerosis, heart disease, Alzheimer’s disease, diabetes, and cancer might be due in part to its ability to modulate the immune system. Together, these findings warrant further consideration of curcumin as a therapy for immune disorders.

509 citations


Book ChapterDOI
TL;DR: Curcumin's ability to alter gene transcription and induce apoptosis in preclinical models advocates its potential utility in cancer chemoprevention and chemotherapy.
Abstract: Curcuma spp. contain turmerin, essential oils, and curcuminoids, including curcumin. Curcumin [1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione] is regarded as the most biologically active constituent of the spice turmeric and it comprises 2-8% of most turmeric preparations. Preclinical data from animal models and phase I clinical studies performed with human volunteers and patients with cancer have demonstrated low systemic bioavailability following oral dosing. Efficient first-pass metabolism and some degree of intestinal metabolism, particularly glucuronidation and sulfation of curcumin, might explain its poor systemic availability when administered via the oral route. A daily oral dose of 3.6 g of curcumin is compatible with detectable levels of the parent compound in colorectal tissue from patients with cancer. The levels demonstrated might be sufficient to exert pharmacological activity. There appears to be negligible distribution of the parent drug to hepatic tissue or other tissues beyond the gastrointestinal tract. Curcumin possesses wide-ranging anti-inflammatory and anticancer properties. Many of these biological activities can be attributed to its potent antioxidant capacity at neutral and acidic pH, its inhibition of cell signaling pathways at multiple levels, its diverse effects on cellular enzymes, and its effects on cell adhesion and angiogenesis. In particular, curcumin's ability to alter gene transcription and induce apoptosis in preclinical models advocates its potential utility in cancer chemoprevention and chemotherapy. With regard to considerable public and scientific interest in the use of phytochemicals derived from dietary components to combat or prevent human diseases, curcumin is currently a leading agent.

421 citations


Journal ArticleDOI
TL;DR: In vivo dose-finding experiments revealed that 500 mg/kg orally was the optimal dose needed to suppress NF-κB and signal transducers and activators of transcription 3 activation and decrease angiogenic cytokine expression.
Abstract: Purpose: Curcumin, a component of turmeric, has been shown to suppress inflammation and angiogenesis largely by inhibiting the transcription factor nuclear factor-κB (NF-κB). This study evaluates the effects of curcumin on ovarian cancer growth using an orthotopic murine model of ovarian cancer. Experimental Design: In vitro and in vivo experiments of curcumin with and without docetaxel were done using human ovarian cancer cell lines SKOV3ip1, HeyA8, and HeyA8-MDR in athymic mice. NF-κB modulation was ascertained using electrophoretic mobility shift assay. Evaluation of angiogenic cytokines, cellular proliferation (proliferating cell nuclear antigen), angiogenesis (CD31), and apoptosis (terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling) was done using immunohistochemical analyses. Results: Curcumin inhibited inducible NF-κB activation and suppressed proliferation in vitro. In vivo dose-finding experiments revealed that 500 mg/kg orally was the optimal dose needed to suppress NF-κB and signal transducers and activators of transcription 3 activation and decrease angiogenic cytokine expression. In the SKOV3ip1 and HeyA8 in vivo models, curcumin alone resulted in 49% ( P = 0.08) and 55% ( P = 0.01) reductions in mean tumor growth compared with controls, whereas when combined with docetaxel elicited 96% ( P P = 0.05). In SKOV3ip1 and HeyA8 tumors, curcumin alone and with docetaxel decreased both proliferation ( P P P Conclusions: Based on significant efficacy in preclinical models, curcumin-based therapies may be attractive in patients with ovarian carcinoma.

Journal ArticleDOI
TL;DR: Overwhelming in vitro evidence and completed clinical trials suggests that curcumin may prove to be useful for the chemoprevention of colon cancer in humans.

BookDOI
01 Jan 2007
TL;DR: Curcumin: The Indian Solid Gold, Highly Active Anti-Cancer Curcumin Analogs, Antioxidant And Anti-Inflammatory Properties of Cur cumin, and Clinical Studies With Curcumins.
Abstract: Curcumin: The Indian Solid Gold .- Highly Active Anti-Cancer Curcumin Analogs.- Antioxidant And Anti-Inflammatory Properties Of Curcumin.- Modulation Of Transcription Factors By Curcumin .- Cancer Chemopreventive Effects Of Curcumin.- Anti-Tumor, Anti-Invasion And Antimetastatic Effects Of Curcumin.- Curcumin As An Inhibitor Of Angiogenesis.- Neuroprotective Effects Of Curcumin.- Regulation Of Cox And Lox By Curcumin.- Molecular Targets Of Curcumin.- Cell Growth Regulation.- Curcumin As Chemosensitizer.- Radioprotection And Radiosensitization By Curcumin.- Immunomodulation By Curcumin.- Beneficial Role Of Curcumin In Skin Diseases.- Cardioprotective Effects Of Curcumin.- Protection From Acute And Chronic Lung Diseases By Curcumin.- Nephroprotective And Hepatoprotective Effects Of Curcuminoids.- Curcumin And Autoimmune Disease.- Pharmacokinetics And Pharmacodynamics Of Curcumin.- Clinical Studies With Curcumin.

Book ChapterDOI
TL;DR: The preliminary results did support the efficacy of curcumin in patients with rheumatoid arthritis, inflammatory eye diseases, inflammatory bowel disease, chronic pancreatitis, psoriasis, hyperlipidemia, and cancers, but it is imperative that well-designed clinical trials, supported by better formulations ofCurcumin or novel routes of administration, be conducted in the near future.
Abstract: Curcumin has long been expected to be a therapeutic or preventive agent for several major human diseases because of its antioxidative, anti-inflammatory, and anticancerous effects. In phase I clinical studies, curcumin with doses up to 3600-8000 mg daily for 4 months did not result in discernible toxicities except mild nausea and diarrhea. The pharmacokinetic studies of curcumin indicated in general a low bioavailability of curcumin following oral application. Nevertheless, the pharmacologically active concentration of curcumin could be achieved in colorectal tissue in patients taking curcumin orally and might also be achievable in tissues such as skin and oral mucosa, which are directly exposed to the drugs applied locally or topically. The effect of curcumin was studied in patients with rheumatoid arthritis, inflammatory eye diseases, inflammatory bowel disease, chronic pancreatitis, psoriasis, hyperlipidemia, and cancers. Although the preliminary results did support the efficacy of curcumin in these diseases, the data to date are all preliminary and not conclusive. It is imperative that well-designed clinical trials, supported by better formulations of curcumin or novel routes of administration, be conducted in the near future.

Journal ArticleDOI
TL;DR: The results suggest that curcumin formulated with phosphatidylcholine furnishes higher systemic levels of parent agent than unformulatedCurcumin.
Abstract: Purpose Curcumin, a major constituent of the spice turmeric, suppresses expression of the enzyme cyclooxygenase 2 (Cox-2) and has cancer chemopreventive properties in rodents. It possesses poor systemic availability. We explored whether formulation with phosphatidylcholine increases the oral bioavailability or affects the metabolite profile of curcumin.

Journal ArticleDOI
TL;DR: Tumors from animals treated with liposomal curcumin showed an antiangiogenic effect, including attenuation of CD31 (an endothelial marker), vascular endothelial growth factor, and interleukin-8 expression by immunohistochemistry, as well as significant tumor growth inhibition in Colo205 and LoVo xenografts.
Abstract: The role of curcumin (diferuloylmethane), a proapoptotic compound, for the treatment of cancer has been an area of growing interest. Curcumin in its free form is poorly absorbed in the gastrointestinal tract and therefore may be limited in its clinical efficacy. Liposome encapsulation of this compound would allow systemic administration. The current study evaluated the preclinical antitumor activity of liposomal curcumin in colorectal cancer. We also compared the efficacy of liposomal curcumin with oxaliplatin, a standard chemotherapy for this malignancy. In vitro treatment with liposomal curcumin induced a dose-dependent growth inhibition [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt] and apoptosis [poly(ADP-ribose) polymerase] in the two human colorectal cancer cell lines tested (LoVo and Colo205 cells). There was also synergism between liposomal curcumin and oxaliplatin at a ratio of 4:1 in LoVo cells in vitro. In vivo, significant tumor growth inhibition was observed in Colo205 and LoVo xenografts, and the growth inhibition by liposomal curcumin was greater than that for oxaliplatin (P < 0.05) in Colo205 cells. Tumors from animals treated with liposomal curcumin showed an antiangiogenic effect, including attenuation of CD31 (an endothelial marker), vascular endothelial growth factor, and interleukin-8 expression by immunohistochemistry. This study establishes the comparable or greater growth-inhibitory and apoptotic effects of liposomal curcumin with oxaliplatin both in vitro and in vivo in colorectal cancer. We are currently developing liposomal curcumin for introduction into the clinical setting.

Journal ArticleDOI
TL;DR: Results indicate that curcumin has nutritional potential as a naturally occurring anti-inflammatory agent for treating OA through suppression of NF-kappaB mediated IL-1beta/TNF-alpha catabolic signalling pathways in chondrocytes.

Journal ArticleDOI
TL;DR: The results suggest that autophagy but not nuclear factor κB plays a central role in curcumin anticancer therapy and warrant further investigation toward application in patients with malignant gliomas.
Abstract: Curcumin has a potent anticancer effect and is a promising new therapeutic strategy We previously demonstrated that curcumin induced non-apoptotic autophagic cell death in malignant glioma cells in vitro and in vivo This compound inhibited the Akt/mammalian target of rapamycin/p70 ribosomal protein S6 kinase pathway and activated the extracellular signal-regulated kinases 1/2 thereby inducing autophagy Interestingly, activation of the first pathway inhibited curcumin-induced autophagy and cytotoxicity, whereas inhibition of the latter pathway inhibited curcumin-induced autophagy and induced apoptosis, thus augmenting the cytotoxicity of curcumin These results imply that these two autophagic pathways have opposite effects on curcumin’s cytotoxicity However, inhibition of nuclear factor κB, which is the main target of curcumin for its anticancer effect, was not observed in malignant glioma cells These results suggest that autophagy but not nuclear factor κB plays a central role in curcumin anticancer

Journal ArticleDOI
TL;DR: The beneficial effects of curcumin on the metabolic abnormalities postulated to be important in the development of diabetic retinopathy suggest thatCurcumin could have potential benefits in inhibiting the development in diabetic patients.
Abstract: Oxidative stress and inflammation are implicated in the pathogenesis of retinopathy in diabetes. The aim of this study is to examine the effect of curcumin, a polyphenol with antioxidant and anti-inflammatory properties, on diabetes-induced oxidative stress and inflammation in the retina of rats. A group of streptozotocin-induced diabetic rats received powdered diet supplemented with 0.05% curcumin (w/w), and another group received diet without curcumin. The diets were initiated soon after induction of diabetes, and the rats were sacrificed 6 weeks after induction of diabetes. The retina was used to quantify oxidative stress and pro-inflammatory markers. Antioxidant capacity and the levels of intracellular antioxidant, GSH (reduced form of glutathione) levels were decreased by about 30–35%, and oxidatively modified DNA (8-OHdG) and nitrotyrosine were increased by 60–70% in the retina of diabetic rats. The levels of interleukin-1β (IL-1β) and vascular endothelial growth factor (VEGF) were elevated by 30% and 110% respectively, and the nuclear transcription factor (NF-k B) was activated by 2 fold. Curcumin administration prevented diabetes-induced decrease in the antioxidant capacity, and increase in 8-OHdG and nitrotyrosine; however, it had only partial beneficial effect on retinal GSH. Curcumin also inhibited diabetes-induced elevation in the levels of IL-1β, VEGF and NF-k B. The effects of curcumin were achieved without amelioration of the severity of hyperglycemia. Thus, the beneficial effects of curcumin on the metabolic abnormalities postulated to be important in the development of diabetic retinopathy suggest that curcumin could have potential benefits in inhibiting the development of retinopathy in diabetic patients.

Journal ArticleDOI
TL;DR: It is suggested that inhibition of p38 MAPK signaling by curcumin could explain the reduced COX-2 and iNOS immunosignals and the nitrite production in colonic mucosa reducing the development of chronic experimental colitis.

Journal ArticleDOI
TL;DR: A role for curcumin as an adjunct to traditional chemotherapy and radiation in the treatment of brain cancer is supported, with effects correlated with reduced expression of bcl‐2 and IAP family members as well as DNA repair enzymes.
Abstract: Malignant gliomas are a debilitating class of brain tumors that are resistant to radiation and chemotherapeutic drugs, contributing to the poor prognosis associated with these tumors. Over-expression of transcription factors such as NFkappaB and AP-1 contribute to the enhanced glioma survival, radioresistance, and chemoresistance. Curcumin, which may inhibit these pathways, was therefore investigated for a potential therapeutic role in glioma. The effect of curcumin on glioma survival was investigated in human (T98G, U87MG, and T67) and rat (C6) glioma cell lines. The ability of curcumin to overcome glioma cell radioresistance and chemoresistance was also explored. Curcumin reduced cell survival in a p53- and caspase-independent manner, an effect correlated with the inhibition of AP-1 and NFkappaB signaling pathways via prevention of constitutive JNK and Akt activation. Curcumin-sensitized glioma cells to several clinically utilized chemotherapeutic agents (cisplatin, etoposide, camptothecin, and doxorubicin) and radiation, effects correlated with reduced expression of bcl-2 and IAP family members as well as DNA repair enzymes (MGMT, DNA-PK, Ku70, Ku80, and ERCC-1). These findings support a role for curcumin as an adjunct to traditional chemotherapy and radiation in the treatment of brain cancer.

Journal ArticleDOI
TL;DR: Results in all models demonstrated the lower antioxidant activity of the demethoxy derivatives, suggesting the ortho-methoxyphenolic groups of curcumin are involved in antioxidant activities.
Abstract: The antioxidant activities of curcumin, its natural demethoxy derivatives (demethoxycurcumin, Dmc and bisdemethoxycurcumin, Bdmc) and metabolite hydrogenated derivatives (tetrahydrocurcumin, THC; hexahydrocurcumin, HHC; octahydrocurcumin; OHC) were comparatively studied using 2,2-diphenyl-1-picrylhydrazyl (DDPH) radical, 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH) induced linoleic oxidation and AAPH induced red blood cell hemolysis assays. Hydrogenated derivatives of curcumin exhibited stronger DPPH scavenging activity compared to curcumin and a reference antioxidant, trolox. The scavenging activity significantly decreased in the order THC>HHC=OHC>trolox>curcumin>Dmc>>>Bdmc. Stronger antioxidant activities toward lipid peroxidation and red blood cell hemolysis were also demonstrated in the hydrogenated derivatives. By the model of AAPH induced linoleic oxidation, the stoichiometric number of peroxyl radical that can be trapped per molecule (n) of hydrogenated derivatives were 3.4, 3.8 and 3.1 for THC, HHC and OHC, respectively. The number (n) of curcumin and Dmc were 2.7 and 2.0, respectively, which are comparable to trolox, while it was 1.4 for Bdmc. The inhibition of AAPH induced red blood cell hemolysis significantly decreased in the order OHC>THC=HHC>trolox>curcumin=Dmc. Results in all models demonstrated the lower antioxidant activity of the demethoxy derivatives, suggesting the ortho-methoxyphenolic groups of curcumin are involved in antioxidant activities. On the other hand, hydrogenation at conjugated double bonds of the central seven carbon chain and beta diketone of curcumin to THC, HHC and OHC remarkably enhance antioxidant activity.

Journal ArticleDOI
TL;DR: It is concluded that curcumin mediates its apoptotic and anti-inflammatory activities through modulation of the redox status of the cell.

Journal ArticleDOI
TL;DR: The results suggested that curcumin administration increased hippocampal neurogenesis in chronically stressed rats, similar to classic antidepressant imipramine treatment, and demonstrated that these new cells mature and become neurons, as determined by triple labeling for BrdU and neuronal- or glial-specific markers.

Journal ArticleDOI
TL;DR: It is reported here that the water solubility of curcumin could be increased from 0.6 microg/ml to 7.4 microg /ml (12-fold increase) by the use of heat, and an enzyme-linked immunosorbent assay that employed HNE modification of solid-phase antigen inhibited HNE-protein modification by 80%.
Abstract: Lipid peroxidation has been implicated in a variety of diseases. 4-Hydroxy-2-nonenal (HNE), a major oxidation by-product, is cytotoxic, mutagenic, and genotoxic, being involved in disease pathogenesis. Naturally occurring pharmacologically active small molecules are very attractive as natural nonsteroidal anti-inflammatory agents. Interest has greatly increased recently in the pharmacotherapeutic potential of curcumin, the yellow pigment found in the rhizomes of the perennial herb Curcuma longa (turmeric). Curcumin is efficacious against colon cancer, cystic fibrosis, and a variety of other disorders. Curcumin's full pharmacological potential is limited owing to its extremely limited water solubility. We report here that the water solubility of curcumin could be increased from 0.6 μg/ml to 7.4 μg/ml (12-fold increase) by the use of heat. Spectrophotometric (400–700 nm) and mass spectrometric profiling of the heat-extracted curcumin displays no significant heat-mediated disintegration of curcumin. Using an...

Journal ArticleDOI
TL;DR: Observations help to elucidate the process by which mitogens up-regulate MDM2, independent of p53, and identify a mechanism by which curcumin functions as an anticancer agent.
Abstract: The oncoprotein MDM2, a major ubiquitin E3 ligase of tumor suppressor p53, has been suggested as a novel target for human cancer therapy based on its p53-dependent and p53-independent activities. We have identified curcumin, which has previously been shown to have anticancer activity, as an inhibitor of MDM2 expression. Curcumin down-regulates MDM2, independent of p53. In a human prostate cancer cell lines PC3 (p53(null)), curcumin reduced MDM2 protein and mRNA in a dose- and time-dependent manner, and enhanced the expression of the tumor suppressor p21(Waf1/CIP1). The inhibitory effects occur at the transcriptional level and seem to involve the phosphatidylinositol 3-kinase/mammalian target of rapamycin/erythroblastosis virus transcription factor 2 pathway. Curcumin induced apoptosis and inhibited proliferation of PC3 cells in culture, but both MDM2 overexpression and knockdown reduced these effects. Curcumin also inhibited the growth of these cells and enhanced the cytotoxic effects of gemcitabine. When it was administered to tumor-bearing nude mice, curcumin inhibited growth of PC3 xenografts and enhanced the antitumor effects of gemcitabine and radiation. In these tumors, curcumin reduced the expression of MDM2. Down-regulation of the MDM2 oncogene by curcumin is a novel mechanism of action that may be essential for its chemopreventive and chemotherapeutic effects. Our observations help to elucidate the process by which mitogens up-regulate MDM2, independent of p53, and identify a mechanism by which curcumin functions as an anticancer agent.

Journal ArticleDOI
TL;DR: Curcumin is more active than the derivatives investigated and that the free phenolic hydroxyl group may be essential for the scavenging properties, and the two halves of the symmetric curcumin molecule act as two separate units and scavenge one radical each.

Journal ArticleDOI
TL;DR: Curcumin exerts anti-inflammatory and growth inhibitory effects in TNF-alpha-treated HaCaT cells through inhibition of NF-kappaB and MAPK pathways.
Abstract: TNF-alpha induces some proinflammatory cytokines including IL-1beta, IL-6, IL-8, and itself by activation of NF-kappaB or MAPKs (p38, JNK, ERK). These cytokines play important roles in various inflammatory skin diseases, such as psoriasis. Recently it was also reported that expression of cyclin E is up-regulated by ERK pathway after TNF-alpha treatment. However, it was unknown whether curcumin, showing inhibitory effects on NF-kappaB and MAPKs, attenuates the expression of TNF-alpha-induced IL-1beta, IL-6, IL-8, and TNF-alpha as well as cyclin E expression in HaCaT cells. In this study, we investigated the inhibitory effect of curcumin on expression of proinflammatory cytokines and cyclin E in TNF-alpha-treated HaCaT cells. We found that curcumin inhibited the expression of TNF-alpha-induced IL-1beta, IL-6, and TNF-alpha, but not IL-8, in TNF-alpha-treated HaCaT cells as well as the TNF-alpha-induced cyclin E expression. In addition, curcumin inhibited the activation of MAPKs (JNK, p38 MAPK, and ERK) and NF-kappaB in TNF-alpha-treated HaCaT cells. Taken together, curcumin exerts anti-inflammatory and growth inhibitory effects in TNF-alpha-treated HaCaT cells through inhibition of NF-kappaB and MAPK pathways.

Journal ArticleDOI
TL;DR: Results indicated that at least the generation of ROS and down-regulation of PfGCN5 HAT activity accounted for curcumin's cytotoxicity for malaria parasites.
Abstract: The emergence of multidrug-resistant parasites is a major concern for malaria control, and development of novel drugs is a high priority. Curcumin, a natural polyphenolic compound, possesses diverse pharmacological properties. Among its antiprotozoan activities, curcumin was potent against both chloroquine-sensitive and -resistant Plasmodium falciparum strains. Consistent with findings in mammalian cell lines, curcumin's prooxidant activity promoted the production in P. falciparum of reactive oxygen species (ROS), whose cytotoxic effect could be antagonized by coincubation with antioxidants and ROS scavengers. Curcumin treatment also resulted in damage of both mitochondrial and nuclear DNA, probably due to the elevation of intracellular ROS. Furthermore, we have demonstrated that curcumin inhibited the histone acetyltransferase (HAT) activity of the recombinant P. falciparum general control nonderepressed 5 (PfGCN5) in vitro and reduced nuclear HAT activity of the parasite in culture. Curcumin-induced hypoacetylation of histone H3 at K9 and K14, but not H4 at K5, K8, K12, and K16, suggested that curcumin caused specific inhibition of the PfGCN5 HAT. Taken together, these results indicated that at least the generation of ROS and down-regulation of PfGCN5 HAT activity accounted for curcumin's cytotoxicity for malaria parasites.

Journal ArticleDOI
TL;DR: It is suggested that curcumin prevents acute liver damage by at least two mechanisms: acting as an antioxidant and by inhibiting NF-kappaB activation and thus production of proinflammatory cytokines.