scispace - formally typeset
Search or ask a question
Topic

Curcuminoid

About: Curcuminoid is a research topic. Over the lifetime, 562 publications have been published within this topic receiving 21102 citations. The topic is also known as: curcuminoids.


Papers
More filters
Journal ArticleDOI
TL;DR: Enhanced bioavailability of curcumin in the near future is likely to bring this promising natural product to the forefront of therapeutic agents for treatment of human disease.
Abstract: Curcumin, a polyphenolic compound derived from dietary spice turmeric, possesses diverse pharmacologic effects including anti-inflammatory, antioxidant, antiproliferative and antiangiogenic activities. Phase I clinical trials have shown that curcumin is safe even at high doses (12 g/day) in humans but exhibit poor bioavailability. Major reasons contributing to the low plasma and tissue levels of curcumin appear to be due to poor absorption, rapid metabolism, and rapid systemic elimination. To improve the bioavailability of curcumin, numerous approaches have been undertaken. These approaches involve, first, the use of adjuvant like piperine that interferes with glucuronidation; second, the use of liposomal curcumin; third, curcumin nanoparticles; fourth, the use of curcumin phospholipid complex; and fifth, the use of structural analogues of curcumin (e.g., EF-24). The latter has been reported to have a rapid absorption with a peak plasma half-life. Despite the lower bioavailability, therapeutic efficacy of...

4,275 citations

Journal ArticleDOI
TL;DR: The tolerance of curcumin in high single oral doses appears to be excellent, and these findings warrant further investigation for its utility as a long-term chemopreventive agent.
Abstract: Curcumin is the major yellow pigment extracted from turmeric, a commonly-used spice in India and Southeast Asia that has broad anticarcinogenic and cancer chemopreventive potential. However, few systematic studies of curcumin's pharmacology and toxicology in humans have been performed. A dose escalation study was conducted to determine the maximum tolerated dose and safety of a single dose of standardized powder extract, uniformly milled curcumin (C 3 Complex™, Sabinsa Corporation). Healthy volunteers were administered escalating doses from 500 to 12,000 mg. Seven of twenty-four subjects (30%) experienced only minimal toxicity that did not appear to be dose-related. No curcumin was detected in the serum of subjects administered 500, 1,000, 2,000, 4,000, 6,000 or 8,000 mg. Low levels of curcumin were detected in two subjects administered 10,000 or 12,000 mg. The tolerance of curcumin in high single oral doses appears to be excellent. Given that achieving systemic bioavailability of curcumin or its metabolites may not be essential for colorectal cancer chemoprevention, these findings warrant further investigation for its utility as a long-term chemopreventive agent.

1,147 citations

Journal ArticleDOI
TL;DR: The most detailed studies using curcumin include anti-inflammatory, antioxidant, anticarcinogenic, antiviral, and antiinfectious activities as discussed by the authors, and wound healing and detoxifying properties have also received considerable attention.
Abstract: Curcuminoids, a group of phenolic compounds isolated from the roots of Curcuma longa (Zingiberaceae), exhibit a variety of beneficial effects on health and on events that help in preventing certain diseases. A vast majority of these studies were carried out with curcumin (diferuloyl methane), which is a major curcuminoid. The most detailed studies using curcumin include anti-inflammatory, antioxidant, anticarcinogenic, antiviral, and antiinfectious activities. In addition, the wound healing and detoxifying properties of curcumin have also received considerable attention. As a result of extensive research on the therapeutic properties of curcumin, some understanding on the cellular, molecular, and biochemical mechanism of action of curcumin is emerging. These findings are summarized in this review.

707 citations

Journal ArticleDOI
TL;DR: It is demonstrated that different analogs of curcumin present in turmeric exhibit variable anti-inflammatory and anti-proliferative activities, which do not correlate with their ability to modulate the ROS status.
Abstract: Curcumin, a component of turmeric (Curcuma longa), has been shown to exhibit chemopreventive activity. Whether analogs of curcumin (Cur), such as demethoxycurcumin (DMC), bisdemethoxycurcumin (BDMC), tetrahydrocurcumin (THC) and turmerones, modulate inflammatory signaling and cell proliferation signaling to same extent as curcumin was investigated. The results indicate that the relative potency for suppression of tumor necrosis factor (TNF)-induced nuclear factor-kappaB (NF-kappaB) activation was Cur > DMC > BDMC; thus suggesting the critical role of methoxy groups on the phenyl ring. THC, which lacks the conjugated bonds in the central seven-carbon chain, was completely inactive for suppression of the transcription factor. Turmerones also failed to inhibit TNF-induced NF-kappaB activation. The suppression of NF-kappaB activity correlated with inhibition of NF-kappaB reporter activity and with down-regulation of cyclooxygenase-2, cyclin D1 and vascular endothelial growth factor, all regulated by NF-kappaB. In contrast to NF-kappaB activity, the suppression of proliferation of various tumor cell lines by Cur, DMC and BDMC was found to be comparable; indicating the methoxy groups play minimum role in the growth-modulatory effects of curcumin. THC and turmerones were also found to be active in suppression of cell growth but to a much lesser extent than curcumin, DMC and BDMC. Whether suppression of NF-kappaB or cell proliferation, no relationship of any of the curcuminoid was found with reactive oxygen species (ROS) production. Overall, our results demonstrated that different analogs of curcumin present in turmeric exhibit variable anti-inflammatory and anti-proliferative activities, which do not correlate with their ability to modulate the ROS status.

580 citations

Journal ArticleDOI
TL;DR: The highlighted studies in the review provide evidence of the ability of curcumin to reduce the body's natural response to cutaneous wounds such as inflammation and oxidation.

419 citations


Network Information
Related Topics (5)
Antioxidant
37.9K papers, 1.7M citations
85% related
Reactive oxygen species
36.6K papers, 2M citations
80% related
Glutathione
42.5K papers, 1.8M citations
79% related
Oxidative stress
86.5K papers, 3.8M citations
79% related
Superoxide
20K papers, 1.3M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202330
202285
202141
202043
201939
201843