Topic

# CURE data clustering algorithm

About: CURE data clustering algorithm is a research topic. Over the lifetime, 13766 publications have been published within this topic receiving 461296 citations.

##### Papers published on a yearly basis

##### Papers

More filters

•

02 Aug 1996TL;DR: In this paper, a density-based notion of clusters is proposed to discover clusters of arbitrary shape, which can be used for class identification in large spatial databases and is shown to be more efficient than the well-known algorithm CLAR-ANS.

Abstract: Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery of clusters with arbitrary shape and good efficiency on large databases. The well-known clustering algorithms offer no solution to the combination of these requirements. In this paper, we present the new clustering algorithm DBSCAN relying on a density-based notion of clusters which is designed to discover clusters of arbitrary shape. DBSCAN requires only one input parameter and supports the user in determining an appropriate value for it. We performed an experimental evaluation of the effectiveness and efficiency of DBSCAN using synthetic data and real data of the SEQUOIA 2000 benchmark. The results of our experiments demonstrate that (1) DBSCAN is significantly more effective in discovering clusters of arbitrary shape than the well-known algorithm CLAR-ANS, and that (2) DBSCAN outperforms CLARANS by a factor of more than 100 in terms of efficiency.

17,056 citations

•

01 Jan 1996TL;DR: DBSCAN, a new clustering algorithm relying on a density-based notion of clusters which is designed to discover clusters of arbitrary shape, is presented which requires only one input parameter and supports the user in determining an appropriate value for it.

Abstract: Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery of clusters with arbitrary shape and good efficiency on large databases. The well-known clustering algorithms offer no solution to the combination of these requirements. In this paper, we present the new clustering algorithm DBSCAN relying on a density-based notion of clusters which is designed to discover clusters of arbitrary shape. DBSCAN requires only one input parameter and supports the user in determining an appropriate value for it. We performed an experimental evaluation of the effectiveness and efficiency of DBSCAN using synthetic data and real data of the SEQUOIA 2000 benchmark. The results of our experiments demonstrate that (1) DBSCAN is significantly more effective in discovering clusters of arbitrary shape than the well-known algorithm CLARANS, and that (2) DBSCAN outperforms CLARANS by a factor of more than 100 in terms of efficiency.

14,297 citations

••

TL;DR: In this article, the authors present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches, and discuss the advantages and disadvantages of these algorithms.

Abstract: In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial is to give some intuition on those questions. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.

9,141 citations

•

03 Jan 2001TL;DR: A simple spectral clustering algorithm that can be implemented using a few lines of Matlab is presented, and tools from matrix perturbation theory are used to analyze the algorithm, and give conditions under which it can be expected to do well.

Abstract: Despite many empirical successes of spectral clustering methods— algorithms that cluster points using eigenvectors of matrices derived from the data—there are several unresolved issues. First. there are a wide variety of algorithms that use the eigenvectors in slightly different ways. Second, many of these algorithms have no proof that they will actually compute a reasonable clustering. In this paper, we present a simple spectral clustering algorithm that can be implemented using a few lines of Matlab. Using tools from matrix perturbation theory, we analyze the algorithm, and give conditions under which it can be expected to do well. We also show surprisingly good experimental results on a number of challenging clustering problems.

9,043 citations