scispace - formally typeset
Search or ask a question
Topic

Current sensor

About: Current sensor is a research topic. Over the lifetime, 18957 publications have been published within this topic receiving 147433 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a dual-phase-shift (DPS) control strategy for a dual active-bridge isolated bidirectional DC-DC converter is proposed, which consists of a phase shift between the primary and secondary voltages of the isolation transformer, and a phase shifting between the gate signals of the diagonal switches of each H-bridge.
Abstract: This paper proposes a novel dual-phase-shift (DPS) control strategy for a dual-active-bridge isolated bidirectional DC-DC converter. The proposed DPS control consists of a phase shift between the primary and secondary voltages of the isolation transformer, and a phase shift between the gate signals of the diagonal switches of each H-bridge. Simulation on a 600-V/5-kW prototype shows that the DPS control has excellent dynamic and static performance compared to the traditional phase-shift control (single phase shift). In this paper, the concept of ldquoreactive powerrdquo is defined, and the corresponding equations are derived for isolated bidirectional DC-DC converters. It is shown that the reactive power in traditional phase-shift control is inherent, and is the main factor contributing to large peak current and large system loss. The DPS control can eliminate reactive power in isolated bidirectional DC-DC converters. In addition, the DPS control can decrease the peak inrush current and steady-state current, improve system efficiency, increase system power capability (by 33%), and minimize the output capacitance as compared to the traditional phase-shift control. The soft-switching range and the influence of short-time-scale factors, such as deadband and system-level safe operation area, are also discussed in detail. Under certain operation conditions, deadband compensation can be implemented easily in the DPS control without a current sensor.

912 citations

Patent
26 Mar 2015
TL;DR: In this article, a surgical system can include an electric motor, a sensor and a microcontroller in signal communication with the electric motor and the sensor, and the microcontroller can adjust the velocity of a firing element when the sensor detects a change in current drawn by the motor that exceeds a threshold amount.
Abstract: A surgical system can include an electric motor, a sensor and a microcontroller in signal communication with the electric motor and the sensor. In various instances, the microcontroller can adjust the velocity of a firing element when the sensor detects a change in current drawn by the electric motor that exceeds a threshold amount.

630 citations

Patent
03 Jun 2010
TL;DR: In this article, an apparatus, method, and system for providing AC line power to lighting devices such as light emitting diodes (LEDs) is described, which consists of a plurality of LEDs coupled in series to form an array of segments of LEDs.
Abstract: An apparatus, method and system are disclosed for providing AC line power to lighting devices such as light emitting diodes (“LEDs”). A representative apparatus comprises: a plurality of LEDs coupled in series to form a plurality of segments of LEDs; first and second current regulators; a current sensor; and a controller to monitor a current level through a series LED current path, and to provide for first or second segments of LEDs to be in or out of the series LED current path at different current levels. A voltage regulator is also utilized to provide a voltage during a zero-crossing interval of the AC voltage. In a representative embodiment, first and second segments of LEDs are both in the series LED current path regulated at a lower current level compared to when only the first segment of LEDs is in the series LED current path.

548 citations

Journal ArticleDOI
TL;DR: A monolithic current-mode CMOS DC-DC converter with integrated power switches and a novel on-chip current sensor for feedback control is presented in this article, where the measured absolute error between the sensed signal and the inductor current is less than 4%.
Abstract: A monolithic current-mode CMOS DC-DC converter with integrated power switches and a novel on-chip current sensor for feedback control is presented in this paper. With the proposed accurate on-chip current sensor, the sensed inductor current, combined with the internal ramp signal, can be used for current-mode DC-DC converter feedback control. In addition, no external components and no extra I/O pins are needed for the current-mode controller. The DC-DC converter has been fabricated with a standard 0.6-/spl mu/m CMOS process. The measured absolute error between the sensed signal and the inductor current is less than 4%. Experimental results show that this converter with on-chip current sensor can operate from 300 kHz to 1 MHz with supply voltage from 3 to 5.2 V, which is suitable for single-cell lithium-ion battery supply applications. The output ripple voltage is about 20 mV with a 10-/spl mu/F off-chip capacitor and 4.7-/spl mu/H off-chip inductor. The power efficiency is over 80% for load current from 50 to 450 mA.

513 citations

Patent
06 Jul 1999
TL;DR: An internal self-test and status reporting system for an electrical device with a plurality of components, a power supply and a microcontroller or microprocessor is described in this paper, where the self test system powers on and off each component one at a time and measures an amount of current drawn by the component with an internal current sensor.
Abstract: An internal self-test and status reporting system for an electrical device with a plurality of components, a power supply and a microcontroller or microprocessor. The self-test system powers on and off each component one at a time and measures an amount of current drawn by the component with an internal current sensor. The self-test system compares the measured amount of current drawn by the component with an expected, predetermined current value or range. The self-test system then reports whether the measured amount of current drawn by the component matches the expected, predetermined current value or is within the expected, predetermined current range. The self-test system reports the results of the self-test by generating a pattern of signals on a general purpose input/output (GPIO) line, displaying a message on a display of the device, or generating a sound with a speaker of the device.

504 citations


Network Information
Related Topics (5)
Voltage
296.3K papers, 1.7M citations
88% related
Capacitor
166.6K papers, 1.4M citations
86% related
Electric power system
133K papers, 1.7M citations
83% related
Control theory
299.6K papers, 3.1M citations
83% related
Control system
129K papers, 1.5M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202382
2022156
2021273
2020655
2019981
2018970