scispace - formally typeset
Search or ask a question
Topic

Current source

About: Current source is a research topic. Over the lifetime, 19882 publications have been published within this topic receiving 164843 citations.


Papers
More filters
Book

[...]

01 Jan 2006
TL;DR: In this article, the authors present a model for high-power switchings with SCR rectifiers and demonstrate how to use SCR Rectifiers to control high power switchings.
Abstract: Preface. Part One Introduction. 1. Introduction. 1.1 Introduction. 1.2 Technical Requirements and Challenges. 1.3 Converter Configurations. 1.4 MV Industrial Drives. 1.5 Summary. References. Appendix. 2. High-Power Semiconductor Devices. 2.1 Introduction. 2.2 High-Power Switching Devices. 2.3 Operation of Series-Connected Devices. 2.4 Summary. References. Part Two Multipulse Diode and SCR Rectifiers. 3. Multipulse Diode Rectifiers. 3.1 Introduction. 3.2 Six-Pulse Diode Rectifier. 3.3 Series-Type Multipulse Diode Rectifiers. 3.4 Separate-Type Multipulse Diode Rectifiers. 3.5 Summary.(c) References. 4. Multipulse SCR Rectifiers. 4.1 Introduction. 4.2 Six-Pulse SCR Rectifier. 4.3 12-Pulse SCR Rectifier. 4.4 18- and 24-Pulse SCR Rectifiers. 4.5 Summary. References. 5. Phase-Shifting Transformers. 5.1 Introduction. 5.2 Y/Z Phase-Shifting Transformers. 5.3 /Z Transformers. 5.4 Harmonic Current Cancellation. 5.5 Summary. Part Three Multilevel Voltage Source Converters. 6. Two-Level Voltage Source Inverter. 6.1 Introduction. 6.2 Sinusoidal PWM. 6.3 Space Vector Modulation. 6.4 Summary. References. 7. Cascaded H-Bridge Multilevel Inverters. 7.1 Introduction. 7.2 H-Bridge Inverter. 7.3 Multilevel Inverter Topologies. 7.4 Carrier Based PWM Schemes. 7.5 Staircase Modulation. 7.6 Summary. References. 8. Diode-Clamped Multilevel Inverters. 8.1 Introduction. 8.2 Three-Level Inverter. 8.3 Space Vector Modulation. 8.4 Neutral-Point Voltage Control. 8.5 Other Space Vector Modulation Algorithms. 8.6 High-Level Diode-Clamped Inverters. 8.7 Summary. References. Appendix. 9. Other Multilevel Voltage Source Inverters. 9.1 Introduction. 9.2 NPC/H-Bridge Inverter. 9.3 Multilevel Flying-Capacitor Inverters. 9.4 Summary. References. Part Four PWM Current Source Converters. 10. PWM Current Source Inverters. 10.1 Introduction. 10.2 PWM Current Source Inverter. 10.3 Space Vector Modulation. 10.4 Parallel Current Source Inverters. 10.5 Load-Commutated Inverter (LCI). 10.6 Summary. References. Appendix. 11. PWM Current Source Rectifiers. 11.1 Introduction. 11.2 Single-Bridge Current Source Rectifier. 11.3 Dual-Bridge Current Source Rectifier. 11.4 Power Factor Control . 11.5 Active Damping Control. 11.6 Summary. References. Appendix. Part Five High-Power AC Drives. 12. Voltage Source Inverter-Fed Drives. 12.1 Introduction. 12.2 Two-Level VBSI-Based MV Drives. 12.3 Neutral-Point Clamped (NPC) Inverter-Fed Drives. 12.4 Multilevel Cascaded H-Bridge (CHB) Inverter-Fed Drives. 12.5 NPC/H-Bridge Inverter-Fed Drives. 12.6 Summary. References. 13. Current Source Inverter-Fed Drives. 13.1 Introduction. 13.2 CSI Drives with PWM Rectifiers. 13.3 Transformerless CSI Drive for Standard AC Motors. 13.4 CSI Drive with Multipulse SCR Rectifier. 13.5 LCI Drives for Synchronous Motors. 13.6 Summary. References. 14. Advanced Drive Control Schemes. 14.1 Introduction. 14.2 Reference Frame Transformation. 14.3 Induction Motor Dynamic Models. 14.4 Principle of Field-Oriented Control (FOC). 14.5 Direct Field-Oriented Control. 14.6 Indirect Field-Oriented Control. 14.7 FOC for CSI-Fed Drives. 14.8 Direct Torque Control. 14.9 Summary. References. Abbreviations. Appendix Projects for Graduate-Level Courses. P. 1 Introduction. P. 2 Sample Project. P. 3 Answers to Sample Project. Index. About the Author.

1,701 citations

Journal ArticleDOI

[...]

TL;DR: The memristor is a 2-terminal nonvolatile memory device that exhibits a pinched hysteresis loop confined to the first and third quadrants of the v-i plane whose contour shape in general changes with both the amplitude and frequency of any periodic sine-wave-like input voltage source, or current source as mentioned in this paper.
Abstract: All 2-terminal non-volatile memory devices based on resistance switching are memristors, regardless of the device material and physical operating mechanisms. They all exhibit a distinctive “fingerprint” characterized by a pinched hysteresis loop confined to the first and the third quadrants of the v–i plane whose contour shape in general changes with both the amplitude and frequency of any periodic “sine-wave-like” input voltage source, or current source. In particular, the pinched hysteresis loop shrinks and tends to a straight line as frequency increases. Though numerous examples of voltage vs. current pinched hysteresis loops have been published in many unrelated fields, such as biology, chemistry, physics, etc., and observed from many unrelated phenomena, such as gas discharge arcs, mercury lamps, power conversion devices, earthquake conductance variations, etc., we restrict our examples in this tutorial to solid-state and/or nano devices where copious examples of published pinched hysteresis loops abound. In particular, we sampled arbitrarily, one example from each year between the years 2000 and 2010, to demonstrate that the memristor is a device that does not depend on any particular material, or physical mechanism. For example, we have shown that spin-transfer magnetic tunnel junctions are examples of memristors. We have also demonstrated that both bipolar and unipolar resistance switching devices are memristors.

1,111 citations

[...]

01 Jan 2019
TL;DR: The goal of this tutorial is to introduce some fundamental circuit-theoretic concepts and properties of the memristor that are relevant to the analysis and design of non-volatile nano memories where binary bits are stored as resistances manifested by the Memristor’s continuum of equilibrium states.
Abstract: All 2-terminal non-volatile memory devices based on resistance switching are memristors, regardless of the device material and physical operating mechanisms. They all exhibit a distinctive “fingerprint” characterized by a pinched hysteresis loop confined to the first and the third quadrants of the v–i plane whose contour shape in general changes with both the amplitude and frequency of any periodic “sine-wave-like” input voltage source, or current source. In particular, the pinched hysteresis loop shrinks and tends to a straight line as frequency increases. Though numerous examples of voltage vs. current pinched hysteresis loops have been published in many unrelated fields, such as biology, chemistry, physics, etc., and observed from many unrelated phenomena, such as gas discharge arcs, mercury lamps, power conversion devices, earthquake conductance variations, etc., we restrict our examples in this tutorial to solid-state and/or nano devices where copious examples of published pinched hysteresis loops abound. In particular, we sampled arbitrarily, one example from each year between the years 2000 and 2010, to demonstrate that the memristor is a device that does not depend on any particular material, or physical mechanism. For example, we have shown that spin-transfer magnetic tunnel junctions are examples of memristors. We have also demonstrated that both bipolar and unipolar resistance switching devices are memristors.

1,016 citations

[...]

01 Jan 2001
TL;DR: In this paper, an accurate PV module electrical model based on the Shockley diode equation is presented, which has a photo-current current source, a single diode junction and a series resistance, and includes temperature dependences.
Abstract: An accurate PV module electrical model is presented based on the Shockley diode equation. The simple model has a photo-current current source, a single diode junction and a series resistance, and includes temperature dependences. The method of parameter extraction and model evaluation in Matlab is demonstrated for a typical 60W solar panel. This model is used to investigate the variation of maximum power point with temperature and isolation levels. A comparison of buck versus boost maximum power point tracker (MPPT) topologies is made, and compared with a direct connection to a constant voltage (battery) load. The boost converter is shown to have a slight advantage over the buck, since it can always track the maximum power point.

896 citations

Journal ArticleDOI

[...]

TL;DR: This review paper is the first of its kind with the aim of providing a “one-stop” information source and a selection guide on impedance-source networks for power conversion for researchers, designers, and application engineers.
Abstract: Impedance networks cover the entire of electric power conversion from dc (converter, rectifier), ac (inverter), to phase and frequency conversion (ac-ac) in a wide range of applications. Various converter topologies have been reported in the literature to overcome the limitations and problems of the traditional voltage source, current source as well as various classical buck-boost, unidirectional, and bidirectional converter topologies. Proper implementation of the impedance-source network with appropriate switching configurations and topologies reduces the number of power conversion stages in the system power chain, which may improve the reliability and performance of the power system. The first part of this paper provides a comprehensive review of the various impedance-source-networks-based power converters and discusses the main topologies from an application point of view. This review paper is the first of its kind with the aim of providing a “one-stop” information source and a selection guide on impedance-source networks for power conversion for researchers, designers, and application engineers. A comprehensive review of various modeling, control, and modulation techniques for the impedance-source converters/inverters will be presented in Part II.

519 citations


Network Information
Related Topics (5)
Voltage
296.3K papers, 1.7M citations
91% related
Capacitor
166.6K papers, 1.4M citations
88% related
Amplifier
163.9K papers, 1.3M citations
84% related
Electromagnetic coil
187.8K papers, 1.1M citations
83% related
CMOS
81.3K papers, 1.1M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20239
202228
2021258
2020565
2019669
2018704