scispace - formally typeset
Search or ask a question
Topic

Cyclase

About: Cyclase is a research topic. Over the lifetime, 10162 publications have been published within this topic receiving 388566 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The heat-labile enterotoxin of Escherichia coli, like cholera toxin, activates adenylate cyclase by catalyzing the transfer of adenosine diphosphate-ribose from HAD+ to the guanyl nucleotide-dependent regulatory component of the cyclase.
Abstract: The heat-labile enterotoxin of Escherichia coli, like cholera toxin, activates adenylate cyclase by catalyzing the transfer of adenosine diphosphate-ribose from HAD+ (oxidized nicotinamide adenine dinucleotide) to the guanyl nucleotide-dependent regulatory component of the cyclase. A preparation of enterotoxin that had been released from E. coli following exposure to polymyxin B and then partially purified was found to contain two enzymatically active peptides, one of about 29,000 and the other of about 24,000 daltons, which correspond in molecular size to the enzymatically active subunit A and fragment A1 of cholera toxin, respectively. As with cholera toxin, the enzymatic activity of E. coli enterotoxin was elevated by incubation with sodium dodecyl sulfate to release active peptides. Treatment with dithiothreitol, however, had no effect. Dithiothreitol activates subunit A of cholera toxin by reducing an internal disulfide bond, but no corresponding bond appears to be present in the partially purified E. coli enterotoxin.

120 citations

Journal ArticleDOI
TL;DR: Specific mouse anti-adenylatecyclase antibodies inhibit adenylate cyclase activity and were used to develop a specific radioimmunoassay that allows detection of as little as 5 ng of adanylate Cyclase in culture supernatants.

119 citations

Journal ArticleDOI
TL;DR: A molecular analysis of GA biosynthesis in Phaeosphaeria sp.
Abstract: The plant hormone, gibberellin (GA), regulates plant growth and development. It was first isolated as a superelongation-promoting diterpenoid from the fungus, Gibberella fujikuroi. G. fujikuroi uses different GA biosynthetic intermediates from those in plants to produce GA3. Another class of GA-producing fungus, Phaeosphaeria sp. L487, synthesizes GA1 by using the same intermediates as those in plants. A molecular analysis of GA biosynthesis in Phaeosphaeria sp. has revealed that diterpene cyclase and cytochrome P450 monooxygenases were involved in the plant-like biosynthesis of GA1. Fungal ent-kaurene synthase is a bifunctional cyclase. Subsequent oxidation steps are catalyzed by P450s, leading to biologically active GA1. GA biosynthesis in plants is divided into three steps involving soluble enzymes and membrane-bound cytochrome P450. The activation of plant GAs is catalyzed by soluble 2-oxoglutarate-dependent dioxygenases, which is in contrast to the catalysis of fungal GA biosynthesis. This difference suggests that the origin of fungal GA biosynthesis is evolutionally independent of that in plants.

119 citations

Journal ArticleDOI
TL;DR: GTP is repored here tha t GTP as a cons t i tuent o f the cy tosol is required for epinephrineinduced inhibi t ion o f membrane -bou nd adenyla te cyclase.

119 citations


Network Information
Related Topics (5)
Receptor
159.3K papers, 8.2M citations
91% related
Protein kinase A
68.4K papers, 3.9M citations
90% related
Binding site
48.1K papers, 2.5M citations
88% related
Phosphorylation
69.3K papers, 3.8M citations
88% related
Mitochondrion
51.5K papers, 3M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202324
202257
202145
202048
201939
201856