scispace - formally typeset
Search or ask a question
Topic

Cyclase

About: Cyclase is a research topic. Over the lifetime, 10162 publications have been published within this topic receiving 388566 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Results indicate that a eukaryotic factor, distinct from calmodulin, enhances rExoY catalysis, and abolishes adenylate cyclase activity in Pseudomonas aeruginosa.
Abstract: The exoenzyme S regulon is a set of coordinately regulated virulence genes of Pseudomonas aeruginosa. Proteins encoded by the regulon include a type III secretion and translocation apparatus, regulators of gene expression, and effector proteins. The effector proteins include two enzymes with ADP-ribosyltransferase activity (ExoS and ExoT) and an acute cytotoxin (ExoU). In this study, we identified ExoY as a fourth effector protein of the regulon. ExoY is homologous to the extracellular adenylate cyclases of Bordetella pertussis (CyaA) and Bacillus anthracis (EF). The homology among the three adenylate cyclases is limited to two short regions, one of which possesses an ATP-binding motif. In assays for adenylate cyclase activity, recombinant ExoY (rExoY) catalyzed the formation of cAMP with a specific activity similar to the basal activity of CyaA. In contrast to CyaA and EF, rExoY activity was not stimulated or activated by calmodulin. A 500-fold stimulation of activity was detected following the addition of a cytosolic extract from Chinese hamster ovary (CHO) cells. These results indicate that a eukaryotic factor, distinct from calmodulin, enhances rExoY catalysis. Site-directed mutagenesis of residues within the putative active site of ExoY abolished adenylate cyclase activity. Infection of CHO cells with ExoY-producing strains of P. aeruginosa resulted in the intracellular accumulation of cAMP. cAMP accumulation within CHO cells depended on an intact type III translocation apparatus, demonstrating that ExoY is directly translocated into the eukaryotic cytosol.

460 citations

Journal ArticleDOI
TL;DR: Plasma membranes prepared from rat livers treated with digitonin or phospholipase A under conditions which result in substantial loss of glucagon- Stimulated adenyl cyclase activity but no loss of fluoride-stimulated activity are thought to reflect extensive modification of the structures responsible for hormone sensitivity without destruction of the catalytic component of the adeny cyclase system.

458 citations

Journal ArticleDOI
TL;DR: The mechanism by which production and proportions of beta,beta- and beta, epsilon-carotenoids may be controlled and adjusted in plants and algae, while avoiding the formation of the inappropriate Epsilon,epsilon-carOTenoids is revealed.
Abstract: Carotenoids with cyclic end groups are essential components of the photosynthetic membranes in all plants, algae, and cyanobacteria These lipid-soluble compounds protect against photooxidation, harvest light for photosynthesis, and dissipate excess light energy absorbed by the antenna pigments The cyclization of lycopene (psi, psi-carotene) is a key branch point in the pathway of carotenoid biosynthesis Two types of cyclic end groups are found in higher plant carotenoids: the beta and epsilon rings Carotenoids with two beta rings are ubiquitous, and those with one beta and one epsilon ring are common; however, carotenoids with two epsilon rings are rare We have identified and sequenced cDNAs that encode the enzymes catalyzing the formation of these two rings in Arabidopsis These beta and epsilon cyclases are encoded by related, single-copy genes, and both enzymes use the linear, symmetrical lycopene as a substrate However, the epsilon cyclase adds only one ring, forming the monocyclic delta-carotene (epsilon, psi-carotene), whereas the beta cyclase introduces a ring at both ends of lycopene to form the bicyclic beta-carotene (beta, beta-carotene) When combined, the beta and epsilon cyclases convert lycopene to alpha-carotene (beta, epsilon-carotene), a carotenoid with one beta and one epsilon ring The inability of the epsilon cyclase to catalyze the introduction of a second epsilon ring reveals the mechanism by which production and proportions of beta,beta- and beta, epsilon-carotenoids may be controlled and adjusted in plants and algae, while avoiding the formation of the inappropriate epsilon,epsilon-carotenoids

455 citations


Network Information
Related Topics (5)
Receptor
159.3K papers, 8.2M citations
91% related
Protein kinase A
68.4K papers, 3.9M citations
90% related
Binding site
48.1K papers, 2.5M citations
88% related
Phosphorylation
69.3K papers, 3.8M citations
88% related
Mitochondrion
51.5K papers, 3M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202324
202257
202145
202048
201939
201856