scispace - formally typeset
Search or ask a question
Topic

Cyclase

About: Cyclase is a research topic. Over the lifetime, 10162 publications have been published within this topic receiving 388566 citations.


Papers
More filters
Journal Article
TL;DR: It appears that a lower affinity functional receptor, probably an A2B receptor, is present in PC12 cells and PC12 cell membranes, whereas such a functional low affinity receptor is not detectable in striatal membrane.
Abstract: Binding assays and assays of activation of adenylate cyclase with the agonists 5'-N-ethylcarboxyamidoadenosine (NECA) and CGS21680 have been used to compare adenosine receptors in rat pheochromocytoma PC12 cells and in rat striatum. The [3H]NECA binding showed two components, whereas [3H]CGS21680 bound to one component in both tissues. The Kd value for the high affinity site labeled with [3H]NECA in PC12 cell membranes (2.3 nM) was lower than that in striatum (6.5 nM). The [3H]CGS21680 binding site showed a Kd value of 6.7 nM and 11.3 nM in PC12 cells and striatum, respectively. In the presence of GTP the KD values of [3H]NECA and [3H]CGS21680 for the high affinity site were increased severalfold, whereas the low affinity sites for [3H]NECA were no longer detected with filtration assays. A comparison of the ability of a series of agonists and antagonists to inhibit high affinity binding of [3H]NECA to A2 receptors in PC12 cell and striatal membranes indicated that agonists had higher affinities and antagonists had lower affinities in PC12 cells, compared with affinities in striatal membranes. Analysis of activation of adenylate cyclase in PC12 cell membranes suggested that the dose-dependent stimulation by NECA involved two components, whereas CGS21680 stimulated via one component. The maximal stimulation by NECA significantly exceeded that caused by CGS21680. In intact PC12 cells, NECA caused a greater accumulation of AMP than did CGS21680, as was the case in membranes. In striatal membranes, NECA and CGS21680 showed similar maximal stimulations of adenylate cyclase. Both NECA and CGS21680 were more potent in PC12 cell membranes than in striatal membranes, in agreement with binding data. However, in contrast to binding data, antagonists were not less potent versus stimulation of adenylate cyclase by NECA or CGS21680 in PC12 cell membranes, compared with striatal membranes. In toto, the results suggest that A2A receptors in striatum are virtually identical to the A2A receptors in PC12 cells. But, in addition to an A2A receptor, it appears that a lower affinity functional receptor, probably an A2B receptor, is present in PC12 cells and PC12 cell membranes, whereas such a functional low affinity receptor is not detectable in striatal membrane.

112 citations

Journal ArticleDOI
TL;DR: ACTH sensitivity of adenyl cyclase in mitochondrial and microsomal fractions from bovine adrenal cortex and in ghosts from rat fat cells can be abolished by the Ca complexing agent EGTA and restored by addition of Ca, which may regulate 3′,5′-AMP formation both in the absence and presence of hormones.

112 citations

Journal ArticleDOI
01 Jun 2005-Peptides
TL;DR: The structure and function of GC-B is examined, and the physiological processes in which this receptor is thought to participate are summarized, to examine the structure and functions of the natriuretic peptide receptors GC-A and -B.

112 citations

Journal ArticleDOI
01 Sep 1996-Stroke
TL;DR: The findings suggest that dilatation of cerebral arterioles by receptor-mediated activation of adenylate cyclase and by direct activation of guanylate cyclase in the rat is mediated in large part by activation of Ca(2+)-dependent K+ channels.
Abstract: Background and Purpose The mechanisms by which cAMP and cGMP produce vasorelaxation are not entirely clear. In this study we examined the hypothesis that relaxation of cerebral arterioles in response to receptor-mediated activation of adenylate cyclase (increase in cAMP) is mediated through Ca2+-dependent K+ channels. Methods We measured the diameter of cerebral arterioles (basal diameter, 47±1 μm) using an open cranial window in anesthetized rats. Agonists and antagonists were applied locally in the cranial window. Results Topical application of adenosine (0.1 and 1 mmol/L), a receptor-mediated activator of adenylate cyclase, and dibutyryl cAMP (60 and 200 μmol/L), a cell-permeable analogue of cAMP, dilated cerebral arterioles. Iberiotoxin (50 nmol/L), a selective inhibitor of Ca2+-dependent K+ channels, reduced vasodilatation in response to 0.1 and 1 mmol/L adenosine by 66% and 28%, respectively. Tetraethylammonium (TEA) (1 mmol/L), another inhibitor of Ca2+-dependent K+ channels, reduced vasodilatation to 0.1 and 1 mmol/L adenosine by 58% and 42%, respectively, and reduced vasodilatation in response to 60 and 200 μmol/L dibutyryl cAMP by 75% and 66%, respectively. Topical application of sodium nitroprusside (0.1 and 1 μmol/L), a direct activator of guanylate cyclase, and 8-bromo cGMP (200 and 600 μmol/L), a cell-permeable analogue, produced dilatation of cerebral arterioles that was inhibited by iberiotoxin (50 nmol/L) and TEA (1 and 3 mmol/L). In contrast, dilatation of cerebral arterioles in response to papaverine (which produces vasodilatation in large part by inhibition of Ca2+ channels) and aprikalim (which produces vasodilatation by activation of ATP-sensitive K+ channels) was not inhibited by iberiotoxin or TEA. Conclusions These findings suggest that dilatation of cerebral arterioles by receptor-mediated activation of adenylate cyclase and by direct activation of guanylate cyclase in the rat is mediated in large part by activation of Ca2+-dependent K+ channels.

112 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that cyclic ADP-ribosyl cyclase (cyclases) is an important calcium mobilizing metabolite produced by the cyclases.
Abstract: Cyclic ADP-ribose is an important calcium mobilizing metabolite produced by the ADP-ribosyl cyclase (cyclases) family of enzymes. Three evolutionarily conserved ADP-ribosyl cyclase superfamily members have been identified, one from the invertebrate Aplysia californica and two from mammalian tissues, CD38 and CD157. CD38 regulates calcium signaling in a number of cell types, and it was recently shown that cyclic ADP-ribose produced by CD38 modulates calcium mobilization induced upon chemokine receptor engagement. Excitingly, because immunocytes deficient in CD38 are unable to migrate to inflammatory sites in vivo, this enzyme has now become an attractive target for drug development. To rationally design inhibitors it is critical to understand the mechanism(s) by which CD38 catalyzes the transformation of its substrate NAD+ into cyclic ADP-ribose. Likewise, it is necessary to identify the CD38 substrate-binding site. Importantly, significant progress has been made in these two areas and much is now known about the structure and enzymology of CD38 and the other ADP-ribosyl cyclase superfamily members. In this review, we will outline the critical data demonstrating a role for CD38 in regulating calcium mobilization in mammalian cells. We will also describe the crystallographic data and site-directed mutagenesis studies that have helped to elucidate the CD38 structure and the identification of its active site and key catalytic residues. Finally, we will address the important advances in our understanding of the kinetic and molecular mechanisms that control cyclic ADP-ribose production by CD38.

112 citations


Network Information
Related Topics (5)
Receptor
159.3K papers, 8.2M citations
91% related
Protein kinase A
68.4K papers, 3.9M citations
90% related
Binding site
48.1K papers, 2.5M citations
88% related
Phosphorylation
69.3K papers, 3.8M citations
88% related
Mitochondrion
51.5K papers, 3M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202324
202257
202145
202048
201939
201856