scispace - formally typeset
Search or ask a question
Topic

Cyclase

About: Cyclase is a research topic. Over the lifetime, 10162 publications have been published within this topic receiving 388566 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The results demonstrate the feasibility of using direct binding methods to study beta-adrenergic receptors in a human tissue and provide an experimental approach to the study of states of altered sensitivity to catecholamines at the receptor level in man.
Abstract: Human lymphocytes are known to posessess a catecholamine-responsive adenylate cyclase which has typical beta-adrenergic specificity. To identify directly and to quantitate these beta-adenergic receptors in human lymphocytes, (-) [3H] alprenolol, a potent beta-adrenergic antagonist, was used to label binding sites in homogenates of human mononuclear leukocytes. Binding of (-) [3H] alprenolol to these sites demonstrated the kinetics, affinity, and stereospecificity expected of binding to adenylate cyclase-coupled beta-adrenergic receptors. Binding was rapid (t1/2 less than 30 s) and rapidly reversible (t1/2 less than 3 min) at 37 degrees C. Binding was a saturable process with 75 +/- 12 fmol (-) [3H] alprenolol bound/mg protein (mean +/- SEM) at saturation, corresponding to about 2,000 sites/cell. Half-maximal saturation occurred at 10 nM (-) [3H] alprenolol, which provides an estimate of the dissociation constant of (-) [3H] alprenolol for the beta-adrenergic receptor. The beta-adrenergic antagonist, (-) propranolol, potently competed for the binding sites, causing half-maximal inhibition of binding at 9 nM. beta-Adrenergic agonists also competed for the binding sites. The order of potency was (-) isoproterenol greater than (-) epinephrine greater than (-)-norepinephrine which agreed with the order of potency of these agents in stimulating leukocyte adenylate cyclase. Dissociation constants computed from binding experiments were virtually identical to those obtained from adenylate cyclase activation studies. Marked stereospecificity was observed for both binding and activation of adenylate cyclase. (-)Stereoisomers of beta-adrenergic agonists and antagonists were 9- to 300-fold more potent than their corresponding (+) stereoisomers. Structurally related compounds devoid of beta-adrenergic activity such as dopamine, dihydroxymandelic acid, normetanephrine, pyrocatechol, and phentolamine did not effectively compete for the binding sites. (-) [3H] alprenolol binding to human mononuclear leukocyte preparations was almost entirely accounted for by binding to small lymphocytes, the predominant cell type in the preparations. No binding was detectable to human erythrocytes. These results demonstrate the feasibility of using direct binding methods to study beta-adrenergic receptors in a human tissue. They also provide an experimental approach to the study of states of altered sensitivity to catecholamines at the receptor level in man.

375 citations

Journal ArticleDOI
TL;DR: Guanyl cyclase, an enzyme catalyzing the formation of guanosine 3',5'-monophosphate from Guanosine triphosphate, has been identified in a variety of animal tissues and preliminary attempts to purify the enzyme by conventional techniques have yielded a purification of about 20-fold.

372 citations

Journal ArticleDOI
TL;DR: The VIP stimulates adenylate cyclase and active ion secretion in both rabbit and human ileal mucosa, and may be related to the pathogenesis of diarrhea in patients with the pancreatic cholera syndrome.
Abstract: Vasoactive intestinal peptide (VIP), originally isolated from hog small intestinal mucosa, has been shown to cause small intestinal secretion. More recently, this peptide has been identified in the plasma and tumors of patients with the so-called "pancreatic cholera" syndrome. In order to explore the possible role of VIP in the pathogenesis of this syndrome, we examined the effects of this peptide and other hormones on the cyclic AMP levels, adenylate cyclase activity, and ion transport in in vitro preparations of ileal mucosa. In rabbit ileal mucosa, VIP (20 mug/ml) caused a prompt fivefold increase in cyclic AMP level, whereas nine other hormones, which have been postulated to cause intestinal secretion, failed to exert such an effect. Pentagastrin and glucagon also failed to increase cyclic AMP levels in canine ileal mucosa. An increase in mucosal cyclic AMP levels was observed at a VIP concentration of 0.1 mug/ml and appeared to be nearly maximal at 2.0 mug/ml. VIP (100 mug/ml) stimulated adenylate cyclase activity in a membrane preparation from rabbit ileal mucosa. Secretin (6.0 x 10(-5) M) failed to do so. When added to the serosal side of isolated rabbit ileal mucosa clamped in an Ussing chamber, VIP (2 mug/ml) increased short-circuit current (SCC) and caused net secretion of both Cl and Na. Net Cl secretion exceeded net Na secretion. These effects of VIP on mucosal cyclic AMP metabolism and ion transport are similar to those observed with cholera enterotoxin and certain prostaglandins. VIP was also tested with normal human ileal mucosa. At a concentration of 2 mug/ml it caused a fivefold increase in cyclic AMP level and an increase in SCC of the same magnitude as that caused by 5 mM theophylline. Addition of a second 2-mug/ml dose of VIP and addition of theophylline after VIP produced no further change in SCC. We conclude the VIP stimulates adenylate cyclase and active ion secretion in both rabbit and human ileal mucosa. This may be related to the pathogenesis of diarrhea in patients with the pancreatic cholera syndrome.

372 citations

Journal ArticleDOI
TL;DR: An attempt is made to evaluate the mechanism of action of NAD Glycohydrolase and ADP-Ribosyltransferase on GTP-Binding Protein and GTPase Activity in response to the presence of Gangliosides and Their Oligosaccharides in Choleragen.
Abstract: PERSPECTIVES AND SUMMARY S82 ROLE OF GANGLIOSIDE GMI AS THE CELL SURFACE RECEPTOR FOR CHOLERAGEN ......... ...... . . . ....... . ......... ...... .... 583 Interaction of Gangliosides and Their Oligosaccharides with Choleragen and Its Subunits 584 Activation of Adenylate Cyclase by Choleragen in Intact Cells 585 Activation of Adenylate Cyclase by Choleragen in Cell-Free Systems . 587 REQUIREMENTS FOR DEMONSTRATION OF ADENYLATE CYCLASE ACTIVATION BY CHOLERAGEN IN CELL-FREE SySTEMS ....... . .. 588 NAD !i88 GTP 588 Calcium-Dependent Regulatory Protein 589 ROLE OF NAD AS SUBSTRATE IN REACTIONS CATALYZED BY CHOLERAGEN 589 Mechanism of Action of NAD-Dependent Pseudomonas EXotoxin A and Diphtheria Toxin .... . . . ....... ..... ......... 590 NAD Glycohydrolase and ADP-Ribosyltransferase Activities oj Choleragen 591 Effects ofCholeragen on GTP-Binding Protein and GTPase Activity 592 SIMILARITIES BETWEEN CHOLERAGEN AND ESCHERICHIA COLI HEAT-LABILE ENTEROTOXIN 593 AN ADP-RIBOSYLTRANSFERASE FROM TURKEY ERYTHROCYTES WITH CHOLERAGEN-LIKE ACTIVITy .... . . . . . . . . . . . 595

365 citations

Journal ArticleDOI
TL;DR: Surprisingly, despite the absence of lutein, neither the lut1 nor lut2 mutation causes a visible deleterious phenotype or altered chlorophyll content, but both mutants have significantly higher levels of beta, beta-carotenoids.
Abstract: Lutein, a dihydroxy beta, epsilon-carotenoid, is the predominant carotenoid in photosynthetic plant tissue and plays a critical role in light-harvesting complex assembly and function. To further understand lutein synthesis and function, we isolated four lutein-deficient mutants of Arabidopsis that define two loci, lut1 and lut2 (for lutein deficient). These loci are required for lutein biosynthesis but not for the biosynthesis of beta, beta-carotenoids. The lut1 mutations are recessive, accumulate high levels of zeinoxanthin, which is the immediate precursor of lutein, and define lut1 as a disruption in epsilon ring hydroxylation. The lut2 mutations are semidominant, and their biochemical phenotype is consistent with a disruption of epsilon ring cyclization. The lut2 locus cosegregates with the recently isolated epsilon cyclase gene, thus, providing additional evidence that the lut2 alleles are mutations in the epsilon cyclase gene. It appears likely that the epsilon cyclase is a key step in regulating lutein levels and the ratio of lutein to beta,beta-carotenoids. Surprisingly, despite the absence of lutein, neither the lut1 nor lut2 mutation causes a visible deleterious phenotype or altered chlorophyll content, but both mutants have significantly higher levels of beta, beta-carotenoids. In particular, there is a stable increase in the xanthophyll cycle pigments (violaxanthin, antheraxanthin, and zeaxanthin) in both lut1 and lut2 mutants as well as an increase in zeinoxanthin in lut1 and beta-carotene in lut2. The accumulation of specific carotenoids is discussed as it pertains to the regulation of carotenoid biosynthesis and incorporation into the photosynthetic apparatus. Presumably, particular beta, beta-carotenoids are able to compensate functionally and structurally for lutein in the photosystems of Arabidopsis.

358 citations


Network Information
Related Topics (5)
Receptor
159.3K papers, 8.2M citations
91% related
Protein kinase A
68.4K papers, 3.9M citations
90% related
Binding site
48.1K papers, 2.5M citations
88% related
Phosphorylation
69.3K papers, 3.8M citations
88% related
Mitochondrion
51.5K papers, 3M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202324
202257
202145
202048
201939
201856