scispace - formally typeset
Search or ask a question
Topic

Cyclase

About: Cyclase is a research topic. Over the lifetime, 10162 publications have been published within this topic receiving 388566 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that the Aplysia enzyme catalyzes the conversion of NAD+ to cADPR and nicotinamide, and is proposed to name it ADP-ribosyl cyclase.
Abstract: Cyclic ADP-ribose (cADPR) is a metabolite of NAD+ that is as active as inositol trisphosphate (IP3) in mobilizing intracellular Ca2+ in sea urchin eggs. The activity of the enzyme responsible for synthesizing cADPR is found not only in sea urchin eggs but also in various mammalian tissue extracts, suggesting that cADPR may be a general messenger for Ca2+ mobilization in cells. An aqueous soluble enzyme, thought to be an NADase, has been purified recently from the ovotestis of Aplysia californica (Hellmich and Strumwasser, 1991). This paper shows that the Aplysia enzyme catalyzes the conversion of NAD+ to cADPR and nicotinamide. The Aplysia enzyme was purified by fractionating the soluble extract of Aplysia ovotestis on a Spectra/gel CM column. The purified enzyme appeared as a single band of approximately 29,000 Da on SDS-PAGE but could be further separated into multiple peaks by high-resolution, cation-exchange chromatography. All of the protein peaks had enzymatic activity, indicating that the enzyme had multiple forms differing by charge. Analysis of the reaction products of the enzyme by anion-exchange high-pressure liquid chromatography (HPLC) indicated no ADP-ribose was produced; instead, each mole of NAD+ was converted to equimolar of cADPR and nicotinamide. The identification of the product as cADPR was further substantiated by proton NMR and also by its Ca(2+)-mobilizing activity. Addition of the product to sea urchin egg homogenates induced Ca2+ release and desensitized the homogenate to authentic cADPR but not to IP3. Microinjection of the product into sea urchin eggs elicited Ca2+ transients as well as the cortical exocytosis reaction. Therefore, by the criteria of HPLC, NMR, and calcium-mobilizing activity, the product was identical to cADPR. To distinguish the Aplysia enzyme from the conventional NADases that produce ADP-ribose, we propose to name it ADP-ribosyl cyclase.

357 citations

Book ChapterDOI
01 Jan 2004
TL;DR: The pituitary adenylate cyclase-activating polypeptide (PACAP) regulates metabolism and the cardiovascular, endocrine, and immune systems, although the physiological event(s) that coordinates PACAP responses remains to be identified.
Abstract: The pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily is composed of peptide or polypeptide hormones, nine of which are bioactive in humans and are related by peptide sequence. Their functions are varied, but include a role in metabolism, growth, and regulation of other hormones.

356 citations

Journal ArticleDOI
TL;DR: The ability of the atropic adrenal to accumulate cyclic AMP in response to ACTH was compatible with the hypothesis that cyclicAMP is involved in the mechanism for the restitution of adrenal growth and steroidogenic capacity.

356 citations

Journal Article
TL;DR: Although cyclic GMP may mediate the inhibition of rabbit platelet function by high concentrations of nitrovasodilators added alone, the synergistic interaction of lower concentrations with PGE1 depends on an enhanced accumulation of cyclic AMP.
Abstract: We investigated the roles of cyclic GMP and cyclic AMP in the inhibition of rabbit platelet aggregation and degranulation by two nitrovasodilators, sodium nitroprusside (SNP) and 3-morpholinosydnonimine (SIN-1; the active metabolite of molsidomine), with particular reference to the synergistic interaction of these drugs with prostaglandin E1 (PGE1). Changes in platelet cyclic [3H]GMP and cyclic [3H]AMP were measured by rapid and sensitive prelabeling techniques, the validity of which were confirmed by radioimmunoassays. Incubation of the platelets with 0.1 to 10 microM SNP alone for 0.5 min caused progressively greater inhibitions of platelet function associated with large dose-dependent increases in cyclic [3H]GMP and 1.4- to 3.0-fold increases in cyclic [3H]AMP. However, addition of SNP with the adenylate cyclase activator, PGE1, at a concentration of the latter that had little effect alone, caused much larger increases in cyclic [3H]AMP and greatly enhanced the inhibition of platelet aggregation. SIN-1 had effects similar to those of SNP, although it was less active. The adenylate cyclase inhibitor 2',5'-dideoxyadenosine (DDA) diminished the increases in cyclic [3H]AMP caused by SNP or SIN-1 in both the presence and absence of PGE1 but reduced the inhibition of platelet function caused by the nitrovasodilators only in the presence of PGE1. These results suggest that, although cyclic GMP may mediate the inhibition of rabbit platelet function by high concentrations of nitrovasodilators added alone, the synergistic interaction of lower concentrations with PGE1 depends on an enhanced accumulation of cyclic AMP. Synergistic effects on cyclic [3H]AMP accumulation were also observed on incubation of platelets with SNP and adenosine, another activator of adenylate cyclase. Hemoglobin, which binds nitric oxide, blocked or reversed the increases in both cyclic [3H]GMP and cyclic [3H]AMP in platelets caused by the nitrovasodilators added either alone or with PGE1. Cilostamide, a selective inhibitor of platelet low Km cyclic AMP phosphodiesterase, had effects on platelet cyclic [3H]AMP accumulation identical to those of SNP, suggesting that the action of the latter depends on inhibition of the same enzyme. MB this relationship was not affected by addition of M&B 22,948. The results strongly suggest that the increases in platelet cyclic [3H]AMP caused by nitrovasodilators in the presence or absence of activators of adenylate cyclase are mediated by the inhibition by cyclic GMP of cyclic AMP breakdown.(ABSTRACT TRUNCATED AT 400 WORDS)

355 citations

Journal ArticleDOI
TL;DR: It is proposed that the active A protomer of choleragen catalyzes the ADP-ribosylation of an arginine, or related amino acid residue in a protein, which is the cyclase itself or is critical to its activation by cholerogen.

354 citations


Network Information
Related Topics (5)
Receptor
159.3K papers, 8.2M citations
91% related
Protein kinase A
68.4K papers, 3.9M citations
90% related
Binding site
48.1K papers, 2.5M citations
88% related
Phosphorylation
69.3K papers, 3.8M citations
88% related
Mitochondrion
51.5K papers, 3M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202324
202257
202145
202048
201939
201856