scispace - formally typeset
Search or ask a question
Topic

Cyclin-dependent kinase 6

About: Cyclin-dependent kinase 6 is a research topic. Over the lifetime, 1977 publications have been published within this topic receiving 121388 citations. The topic is also known as: MCPH12 & PLSTIRE.


Papers
More filters
Journal ArticleDOI
TL;DR: This work has shown that Cdk activity is governed by a complex network of regulatory subunits and phosphorylation events whose precise effects on Cdk conformation have been revealed by recent crystallographic studies.
Abstract: Cyclin-dependent kinases (Cdks) play a well-established role in the regulation of the eukaryotic cell division cycle and have also been implicated in the control of gene transcription and other processes. Cdk activity is governed by a complex network of regulatory subunits and phosphorylation events whose precise effects on Cdk conformation have been revealed by recent crystallographic studies. In the cell, these regulatory mechanisms generate an interlinked series of Cdk oscillators that trigger the events of cell division.

2,193 citations

Journal ArticleDOI
15 Sep 1994-Nature
TL;DR: A new member of the p16INK4 family is isolated, p15INK4B, which is induced ∼30-fold in human keratinocytes by treatment with TGF-β, suggesting that pi5 may act as an effector of T GF-β-mediated cell cycle arrest.
Abstract: TRANSFORMING growth factor-beta (TGF-β) inhibits cell proliferation by inducing a Gl-phase cell cycle arrest1. Normal progression through Gl is promoted by the activity of the cyclin-dependent protein kinases CDK4 and CDK6 (ref. 2), which are inhibited by the protein p16INK4. We have isolated a new member of the p16INK4 family, p15INK4B. p15 expression is induced ∼30-fold in human keratinocytes by treatment with TGF-β, suggesting that pi5 may act as an effector of TGF-β-mediated cell cycle arrest. The gene encoding p15 is located on chromosome 9 adjacent to the p16 gene at a frequent site of chromosomal abnormality in human tumours (9p21).

1,830 citations

Journal ArticleDOI
TL;DR: This review provides an overview of deregulation of the cell cycle in cancer by focusing on mechanisms, i.e. regulation of cyclin‐dependent kinases (CDK) by cyclins, CDK inhibitors and phosphorylating events.
Abstract: The cell cycle is controlled by numerous mechanisms ensuring correct cell division. This review will focus on these mechanisms, i.e. regulation of cyclin-dependent kinases (CDK) by cyclins, CDK inhibitors and phosphorylating events. The quality checkpoints activated after DNA damage are also discussed. The complexity of the regulation of the cell cycle is also reflected in the different alterations leading to aber- rant cell proliferation and development of cancer. Consequently, targeting the cell cycle in general and CDK in particular presents unique opportunities for drug discovery. This review provides an overview of deregulation of the cell cycle in cancer. Different families of known CDK inhibitors acting by ATP competition are also discussed. Cur- rently, at least three compounds with CDK inhibitory activity (flavopiridol, UCN-01, roscovitine) have entered clinical trials.

1,671 citations

Journal ArticleDOI
TL;DR: In addition to their roles as inhibitors, the p21 family of proteins may also have roles as adaptor proteins that assemble and program kinase complexes for specific functions.
Abstract: The association of cdk4 with D-type cyclins to form functional kinase complexes is comparatively inefficient. This has led to the suggestion that assembly might be a regulated step. In this report we demonstrate that the CDK inhibitors pZl'^^'', p27^^^, and p57^^^^ all promote the association of cdk4 with the D-type cyclins. This effect is specific and does not occur with other cdk inhibitors or cdk-binding proteins. Both in vivo and in vitro, the abundance of assembled cdk4/cyclin D complex increases directly with increasing inhibitor levels. The promotion of assembly is not attributable to a simple cell cycle block and requires the function of both the cdk and cyclin-binding domains. Kinetic studies demonstrate that p21 and p27 lead to a 35- and 80-fold increase in K^, respectively, mostly because of a decrease in X^ff. At low concentrations, p21 promotes the assembly of active kinase complexes, whereas at higher concentrations, it inhibits activity. Moreover, immunodepletion experiments demonstrate that most of the active cdk4-associated kinase activity also associates with p21. To confirm these results in a natural setting, we examine the assembly of endogenous complexes in mammary epithelial cells after release from a GQ arrest. In agreement with our other data, cyclin Dl and p21 bind concomitantly to cdk4 during the in vivo assembly of cdk4/cyclin Dl complexes. This complex assembly occurs in parallel to an increase in cyclin Dl-associated kinase activity. Immunodepletion experiments demonstrate that most of the cellular cyclin Dl-associated kinase activity is also p21 associated. Finally, we find that all three CIP/KIP inhibitors target cdk4 and cyclin Dl to the nucleus. We suggest that in addition to their roles as inhibitors, the p21 family of proteins, originally identified as inhibitors, may also have roles as adaptor proteins that assemble and program kinase complexes for specific functions.

1,390 citations

Journal ArticleDOI
27 Oct 2011-Nature
TL;DR: It is shown that a novel small molecule inhibitor of the BET family, GSK1210151A (I-BET151), has profound efficacy against human and murine MLL-fusion leukaemic cell lines, through the induction of early cell cycle arrest and apoptosis, establishing the displacement of BET proteins from chromatin as a promising epigenetic therapy for these aggressive leukaemias.
Abstract: Recurrent chromosomal translocations involving the mixed lineage leukaemia (MLL) gene initiate aggressive forms of leukaemia, which are often refractory to conventional therapies1. Many MLL-fusion partners are members of the super elongation complex (SEC), a critical regulator of transcriptional elongation, suggesting that aberrant control of this process has an important role in leukaemia induction2, 3. Here we use a global proteomic strategy to demonstrate that MLL fusions, as part of SEC2, 3 and the polymerase-associated factor complex (PAFc)4, 5, are associated with the BET family of acetyl-lysine recognizing, chromatin ‘adaptor’ proteins. These data provided the basis for therapeutic intervention in MLL-fusion leukaemia, via the displacement of the BET family of proteins from chromatin. We show that a novel small molecule inhibitor of the BET family, GSK1210151A (I-BET151), has profound efficacy against human and murine MLL-fusion leukaemic cell lines, through the induction of early cell cycle arrest and apoptosis. I-BET151 treatment in two human leukaemia cell lines with different MLL fusions alters the expression of a common set of genes whose function may account for these phenotypic changes. The mode of action of I-BET151 is, at least in part, due to the inhibition of transcription at key genes (BCL2, C-MYC and CDK6) through the displacement of BRD3/4, PAFc and SEC components from chromatin. In vivo studies indicate that I-BET151 has significant therapeutic value, providing survival benefit in two distinct mouse models of murine MLL–AF9 and human MLL–AF4 leukaemia. Finally, the efficacy of I-BET151 against human leukaemia stem cells is demonstrated, providing further evidence of its potent therapeutic potential. These findings establish the displacement of BET proteins from chromatin as a promising epigenetic therapy for these aggressive leukaemias.

1,388 citations


Network Information
Related Topics (5)
Apoptosis
115.4K papers, 4.8M citations
88% related
Signal transduction
122.6K papers, 8.2M citations
87% related
Cell culture
133.3K papers, 5.3M citations
87% related
Cancer
339.6K papers, 10.9M citations
85% related
Transcription factor
82.8K papers, 5.4M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023183
2022159
2021114
2020131
2019133
201896