Topic
Cycloaddition
About: Cycloaddition is a research topic. Over the lifetime, 39904 publications have been published within this topic receiving 728711 citations. The topic is also known as: Cycloaddition reaction.
Papers published on a yearly basis
Papers
More filters
10,370 citations
TL;DR: A novel regiospecific copper(I)-catalyzed 1,3-dipolar cycloaddition of terminal alkynes to azides on solid-phase is reported, and the X-ray structure of 2-azido-2-methylpropanoic acid has been solved, to yield structural information on the 1, 3-dipoles entering the reaction.
Abstract: The cycloaddition of azides to alkynes is one of the most important synthetic routes to 1H-[1,2,3]-triazoles. Here a novel regiospecific copper(I)-catalyzed 1,3-dipolar cycloaddition of terminal alkynes to azides on solid-phase is reported. Primary, secondary, and tertiary alkyl azides, aryl azides, and an azido sugar were used successfully in the copper(I)-catalyzed cycloaddition producing diversely 1,4-substituted [1,2,3]-triazoles in peptide backbones or side chains. The reaction conditions were fully compatible with solid-phase peptide synthesis on polar supports. The copper(I) catalysis is mild and efficient (>95% conversion and purity in most cases) and furthermore, the X-ray structure of 2-azido-2-methylpropanoic acid has been solved, to yield structural information on the 1,3-dipoles entering the reaction. Novel Fmoc-protected amino azides derived from Fmoc-amino alcohols were prepared by the Mitsunobu reaction.
7,397 citations
TL;DR: The basis for the unique properties and rate enhancement for triazole formation under Cu(1) catalysis should be found in the high ∆G of the reaction in combination with the low character of polarity of the dipole of the noncatalyzed thermal reaction, which leads to a considerable activation barrier.
Abstract: The Huisgen 1,3-dipolar cycloaddition reaction of organic azides and alkynes has gained considerable attention in recent years due to the introduction in 2001 of Cu(1) catalysis by Tornoe and Meldal, leading to a major improvement in both rate and regioselectivity of the reaction, as realized independently by the Meldal and the Sharpless laboratories. The great success of the Cu(1) catalyzed reaction is rooted in the fact that it is a virtually quantitative, very robust, insensitive, general, and orthogonal ligation reaction, suitable for even biomolecular ligation and in vivo tagging or as a polymerization reaction for synthesis of long linear polymers. The triazole formed is essentially chemically inert to reactive conditions, e.g. oxidation, reduction, and hydrolysis, and has an intermediate polarity with a dipolar moment of ∼5 D. The basis for the unique properties and rate enhancement for triazole formation under Cu(1) catalysis should be found in the high ∆G of the reaction in combination with the low character of polarity of the dipole of the noncatalyzed thermal reaction, which leads to a considerable activation barrier. In order to understand the reaction in detail, it therefore seems important to spend a moment to consider the structural and mechanistic aspects of the catalysis. The reaction is quite insensitive to reaction conditions as long as Cu(1) is present and may be performed in an aqueous or organic environment both in solution and on solid support.
3,855 citations
TL;DR: A strain-promoted [3 + 2] cycloaddition between cyclooctynes and azides that proceeds under physiological conditions without the need for a catalyst was demonstrated by selective modification of biomolecules in vitro and on living cells, with no apparent toxicity.
Abstract: Selective chemical reactions that are orthogonal to the diverse functionality of biological systems have become important tools in the field of chemical biology. Two notable examples are the Staudinger ligation of azides and phosphines and the Cu(I)-catalyzed [3 + 2] cycloaddition of azides and alkynes (“click chemistry”). The Staudinger ligation has sufficient biocompatibility for performance in living animals but suffers from phosphine oxidation and synthetic challenges. Click chemistry obviates the requirement of phosphines, but the Cu(I) catalyst is toxic to cells, thereby precluding in vivo applications. Here we present a strain-promoted [3 + 2] cycloaddition between cyclooctynes and azides that proceeds under physiological conditions without the need for a catalyst. The utility of the reaction was demonstrated by selective modification of biomolecules in vitro and on living cells, with no apparent toxicity.
2,202 citations
TL;DR: This tutorial review examines the history of the development of the CuAAC reaction, its key mechanistic aspects, and highlights the features that make it useful to practitioners in different fields of chemical science.
Abstract: Copper-catalyzed azide–alkyne cycloaddition (CuAAC) is a widely utilized, reliable, and straightforward way for making covalent connections between building blocks containing various functional groups. It has been used in organic synthesis, medicinal chemistry, surface and polymer chemistry, and bioconjugation applications. Despite the apparent simplicity of the reaction, its mechanism involves multiple reversible steps involving coordination complexes of copper(I) acetylides of varying nuclearity. Understanding and controlling these equilibria is of paramount importance for channeling the reaction into the productive catalytic cycle. This tutorial review examines the history of the development of the CuAAC reaction, its key mechanistic aspects, and highlights the features that make it useful to practitioners in different fields of chemical science.
1,704 citations