scispace - formally typeset
Search or ask a question

Showing papers on "Cytotoxic T cell published in 2013"


Journal ArticleDOI
TL;DR: The emergence of tumor cells that no longer express the target indicates a need to target other molecules in addition to CD19 in some patients with ALL.
Abstract: Chimeric antigen receptor-modified T cells with specificity for CD19 have shown promise in the treatment of chronic lymphocytic leukemia (CLL). It remains to be established whether chimeric antigen receptor T cells have clinical activity in acute lymphoblastic leukemia (ALL). Two children with relapsed and refractory pre-B-cell ALL received infusions of T cells transduced with anti-CD19 antibody and a T-cell signaling molecule (CTL019 chimeric antigen receptor T cells), at a dose of 1.4×10(6) to 1.2×10(7) CTL019 cells per kilogram of body weight. In both patients, CTL019 T cells expanded to a level that was more than 1000 times as high as the initial engraftment level, and the cells were identified in bone marrow. In addition, the chimeric antigen receptor T cells were observed in the cerebrospinal fluid (CSF), where they persisted at high levels for at least 6 months. Eight grade 3 or 4 adverse events were noted. The cytokine-release syndrome and B-cell aplasia developed in both patients. In one child, the cytokine-release syndrome was severe; cytokine blockade with etanercept and tocilizumab was effective in reversing the syndrome and did not prevent expansion of chimeric antigen receptor T cells or reduce antileukemic efficacy. Complete remission was observed in both patients and is ongoing in one patient at 11 months after treatment. The other patient had a relapse, with blast cells that no longer expressed CD19, approximately 2 months after treatment. Chimeric antigen receptor-modified T cells are capable of killing even aggressive, treatment-refractory acute leukemia cells in vivo. The emergence of tumor cells that no longer express the target indicates a need to target other molecules in addition to CD19 in some patients with ALL.

3,027 citations


Journal ArticleDOI
TL;DR: The mechanisms through which T cell activation, differentiation and function is controlled by co-stimulatory and co-inhibitory receptors are reviewed.
Abstract: Co-stimulatory and co-inhibitory receptors have a pivotal role in T cell biology, as they determine the functional outcome of T cell receptor (TCR) signalling. The classic definition of T cell co-stimulation continues to evolve through the identification of new co-stimulatory and co-inhibitory receptors, the biochemical characterization of their downstream signalling events and the delineation of their immunological functions. Notably, it has been recently appreciated that co-stimulatory and co-inhibitory receptors display great diversity in expression, structure and function, and that their functions are largely context dependent. Here, we focus on some of these emerging concepts and review the mechanisms through which T cell activation, differentiation and function is controlled by co-stimulatory and co-inhibitory receptors.

2,378 citations


Journal ArticleDOI
TL;DR: The results argue that these major immunosuppressive pathways are intrinsically driven by the immune system rather than being orchestrated by cancer cells, and imply that cancer immunotherapy approaches targeting negative regulatory immune checkpoints might be preferentially beneficial for patients with a preexisting T cell–inflamed tumor microenvironment.
Abstract: Tumor escape from immune-mediated destruction has been associated with immunosuppressive mechanisms that inhibit T cell activation. Although evidence for an active immune response, including infiltration with CD8 + T cells, can be found in a subset of patients, those tumors are nonetheless not immunologically rejected. In the current report, we show that it is the subset of T cell–inflamed tumors that showed high expression of three defined immunosuppressive mechanisms: indoleamine-2,3-dioxygenase (IDO), PD-L1/B7-H1, and FoxP3 + regulatory T cells (T regs ), suggesting that these inhibitory pathways might serve as negative feedback mechanisms that followed, rather than preceded, CD8 + T cell infiltration. Mechanistic studies in mice revealed that up-regulated expression of IDO and PD-L1, as well as recruitment of T regs , in the tumor microenvironment depended on the presence of CD8 + T cells. The former was driven by interferon-γ and the latter by a production of CCR4-binding chemokines along with a component of induced proliferation. Our results argue that these major immunosuppressive pathways are intrinsically driven by the immune system rather than being orchestrated by cancer cells, and imply that cancer immunotherapy approaches targeting negative regulatory immune checkpoints might be preferentially beneficial for patients with a preexisting T cell–inflamed tumor microenvironment.

1,407 citations


Journal ArticleDOI
TL;DR: Anti–CTLA-4 antibody induces selective depletion of T reg cells within tumor lesions in a manner that is dependent on the presence of Fc gamma receptor-expressing macrophages within the tumor microenvironment.
Abstract: Treatment with monoclonal antibody specific for cytotoxic T lymphocyte–associated antigen 4 (CTLA-4), an inhibitory receptor expressed by T lymphocytes, has emerged as an effective therapy for the treatment of metastatic melanoma. Although subject to debate, current models favor a mechanism of activity involving blockade of the inhibitory activity of CTLA-4 on both effector (T eff) and regulatory (T reg) T cells, resulting in enhanced antitumor effector T cell activity capable of inducing tumor regression. We demonstrate, however, that the activity of anti–CTLA-4 antibody on the T reg cell compartment is mediated via selective depletion of T reg cells within tumor lesions. Importantly, T reg cell depletion is dependent on the presence of Fcγ receptor–expressing macrophages within the tumor microenvironment, indicating that T reg cells are depleted in trans in a context-dependent manner. Our results reveal further mechanistic insight into the activity of anti-CTLA-4–based cancer immunotherapy, and illustrate the importance of specific features of the local tumor environment on the final outcome of antibody-based immunomodulatory therapies.

1,225 citations


Journal ArticleDOI
TL;DR: It is shown that autochthonous EGFR-driven lung tumors inhibit antitumor immunity by activating the PD-1/PD-L1 pathway to suppress T-cell function and increase levels of proinflammatory cytokines.
Abstract: The success in lung cancer therapy with Programmed Death (PD)-1 blockade suggests that immune escape mechanisms contribute to lung tumor pathogenesis. We identified a correlation between Epidermal Growth Factor Receptor (EGFR) pathway activation and a signature of immunosuppression manifested by upregulation of PD-1, PD-L1, cytotoxic T lymphocyte antigen-4 (CTLA-4), and multiple tumor-promoting inflammatory cytokines. We observed decreased cytotoxic T cells and increased markers of T cell exhaustion in mouse models of EGFR-driven lung cancer. PD-1 antibody blockade improved the survival of mice with EGFR-driven adenocarcinomas by enhancing effector T cell function and lowering the levels of tumor-promoting cytokines. Expression of mutant EGFR in bronchial epithelial cells induced PD-L1, and PD-L1 expression was reduced by EGFR inhibitors in non-small cell lung cancer cell lines with activated EGFR. These data suggest that oncogenic EGFR signaling remodels the tumor microenvironment to trigger immune escape, and mechanistically link treatment response to PD-1 inhibition.

1,041 citations


Journal ArticleDOI
TL;DR: It is concluded that whereas B cells and αβ T cells are commonly thought to contribute primarily to the antigen-specific effector and memory phases of immunity, γδ T cells is distinct in that they combine conventional adaptive features with rapid, innate-like responses that can place them in the initiation phase of immune reactions.
Abstract: γδ T cells are a unique and conserved population of lymphocytes that have been the subject of a recent explosion of interest owing to their essential contributions to many types of immune response and immunopathology But what does the integration of recent and long-established studies really tell us about these cells and their place in immunology? The time is ripe to consider the evidence for their unique and crucial functions We conclude that whereas B cells and αβ T cells are commonly thought to contribute primarily to the antigen-specific effector and memory phases of immunity, γδ T cells are distinct in that they combine conventional adaptive features (inherent in their T cell receptors and pleiotropic effector functions) with rapid, innate-like responses that can place them in the initiation phase of immune reactions This underpins a revised perspective on lymphocyte biology and the regulation of immunogenicity

987 citations


Journal ArticleDOI
TL;DR: Co-transduced T cells destroy tumors that express both antigens but do not affect tumors expressing either antigen alone, and this 'tumor-sensing' strategy may help broaden the applicability and avoid some of the side effects of targeted T-cell therapies.
Abstract: To increase the tumor specificity of engineered T cells, Kloss et al. design an approach that relies on T cell recognition of two, rather than one, antigens.

746 citations


Journal ArticleDOI
TL;DR: The identification of CD4⁺ Tfh cells in breast cancer suggests that they are an important immune element whose presence in the tumor is a prognostic factor.
Abstract: CD4+ T cells are critical regulators of immune responses, but their functional role in human breast cancer is relatively unknown. The goal of this study was to produce an image of CD4+ T cells infiltrating breast tumors using limited ex vivo manipulation to better understand the in vivo differences associated with patient prognosis. We performed comprehensive molecular profiling of infiltrating CD4+ T cells isolated from untreated invasive primary tumors and found that the infiltrating T cell subpopulations included follicular helper T (Tfh) cells, which have not previously been found in solid tumors, as well as Th1, Th2, and Th17 effector memory cells and Tregs. T cell signaling pathway alterations included a mixture of activation and suppression characterized by restricted cytokine/chemokine production, which inversely paralleled lymphoid infiltration levels and could be reproduced in activated donor CD4+ T cells treated with primary tumor supernatant. A comparison of extensively versus minimally infiltrated tumors showed that CXCL13-producing CD4+ Tfh cells distinguish extensive immune infiltrates, principally located in tertiary lymphoid structure germinal centers. An 8-gene Tfh signature, signifying organized antitumor immunity, robustly predicted survival or preoperative response to chemotherapy. Our identification of CD4+ Tfh cells in breast cancer suggests that they are an important immune element whose presence in the tumor is a prognostic factor.

744 citations


Journal ArticleDOI
TL;DR: In the absence of crossreactive neutralizing antibodies, CD8+ T cells specific to conserved viral epitopes correlated with crossprotection against symptomatic influenza, which could guide universal influenza vaccine development.
Abstract: The role of T cells in mediating heterosubtypic protection against natural influenza illness in humans is uncertain. The 2009 H1N1 pandemic (pH1N1) provided a unique natural experiment to determine whether crossreactive cellular immunity limits symptomatic illness in antibody-naive individuals. We followed 342 healthy adults through the UK pandemic waves and correlated the responses of pre-existing T cells to the pH1N1 virus and conserved core protein epitopes with clinical outcomes after incident pH1N1 infection. Higher frequencies of pre-existing T cells to conserved CD8 epitopes were found in individuals who developed less severe illness, with total symptom score having the strongest inverse correlation with the frequency of interferon-γ (IFN-γ)(+) interleukin-2 (IL-2)(-) CD8(+) T cells (r = -0.6, P = 0.004). Within this functional CD8(+)IFN-γ(+)IL-2(-) population, cells with the CD45RA(+) chemokine (C-C) receptor 7 (CCR7)(-) phenotype inversely correlated with symptom score and had lung-homing and cytotoxic potential. In the absence of crossreactive neutralizing antibodies, CD8(+) T cells specific to conserved viral epitopes correlated with crossprotection against symptomatic influenza. This protective immune correlate could guide universal influenza vaccine development.

734 citations


Journal ArticleDOI
TL;DR: It is indicated that augmenting glycolytic flux drives CD8+ T cells toward a terminally differentiated state, while its inhibition preserves the formation of long-lived memory CD8+, and the efficacy of T cell-based therapies against chronic infectious diseases and cancer.
Abstract: Naive CD8+ T cells rely upon oxidation of fatty acids as a primary source of energy. After antigen encounter, T cells shift to a glycolytic metabolism to sustain effector function. It is unclear, however, whether changes in glucose metabolism ultimately influence the ability of activated T cells to become long-lived memory cells. We used a fluorescent glucose analog, 2-NBDG, to quantify glucose uptake in activated CD8+ T cells. We found that cells exhibiting limited glucose incorporation had a molecular profile characteristic of memory precursor cells and an increased capacity to enter the memory pool compared with cells taking up high amounts of glucose. Accordingly, enforcing glycolytic metabolism by overexpressing the glycolytic enzyme phosphoglycerate mutase-1 severely impaired the ability of CD8+ T cells to form long-term memory. Conversely, activation of CD8+ T cells in the presence of an inhibitor of glycolysis, 2-deoxyglucose, enhanced the generation of memory cells and antitumor functionality. Our data indicate that augmenting glycolytic flux drives CD8+ T cells toward a terminally differentiated state, while its inhibition preserves the formation of long-lived memory CD8+ T cells. These results have important implications for improving the efficacy of T cell–based therapies against chronic infectious diseases and cancer.

711 citations


Journal ArticleDOI
TL;DR: It is shown that the intracellular supply of large neutral amino acids in T cells was regulated by pathogens and the T cell antigen receptor (TCR), and that Slc7a5-null T cells were unable to metabolically reprogram in response to antigen and did not undergo clonal expansion or effector differentiation.
Abstract: T lymphocytes must regulate nutrient uptake to meet the metabolic demands of an immune response. Here we show that the intracellular supply of large neutral amino acids (LNAAs) in T cells was regulated by pathogens and the T cell antigen receptor (TCR). T cells responded to antigen by upregulating expression of many amino-acid transporters, but a single System L ('leucine-preferring system') transporter, Slc7a5, mediated uptake of LNAAs in activated T cells. Slc7a5-null T cells were unable to metabolically reprogram in response to antigen and did not undergo clonal expansion or effector differentiation. The metabolic catastrophe caused by loss of Slc7a5 reflected the requirement for sustained uptake of the LNAA leucine for activation of the serine-threonine kinase complex mTORC1 and for expression of the transcription factor c-Myc. Control of expression of the System L transporter by pathogens is thus a critical metabolic checkpoint for T cells.

Journal ArticleDOI
TL;DR: How activation of the Nlrp3 inflammasome in MDSCs by 5FU and Gem limits the antitumor efficacy of these chemotherapeutic agents is identified.
Abstract: Chemotherapeutic agents are widely used for cancer treatment. In addition to their direct cytotoxic effects, these agents harness the host's immune system, which contributes to their antitumor activity. Here we show that two clinically used chemotherapeutic agents, gemcitabine (Gem) and 5-fluorouracil (5FU), activate the NOD-like receptor family, pyrin domain containing-3 protein (Nlrp3)-dependent caspase-1 activation complex (termed the inflammasome) in myeloid-derived suppressor cells (MDSCs), leading to production of interleukin-1β (IL-1β), which curtails anticancer immunity. Chemotherapy-triggered IL-1β secretion relied on lysosomal permeabilization and the release of cathepsin B, which bound to Nlrp3 and drove caspase-1 activation. MDSC-derived IL-1β induced secretion of IL-17 by CD4(+) T cells, which blunted the anticancer efficacy of the chemotherapy. Accordingly, Gem and 5FU exerted higher antitumor effects when tumors were established in Nlrp3(-/-) or Casp1(-/-) mice or wild-type mice treated with interleukin-1 receptor antagonist (IL-1Ra). Altogether, these results identify how activation of the Nlrp3 inflammasome in MDSCs by 5FU and Gem limits the antitumor efficacy of these chemotherapeutic agents.

Journal ArticleDOI
TL;DR: iCARs provide a dynamic, self-regulating safety switch to prevent, rather than treat, the consequences of inadequate T cell specificity, and demonstrate that CTLA-4– or PD-1–based iCARs can selectively limit cytokine secretion, cytotoxicity, and proliferation induced through the endogenous T cell receptor or an activating chimeric receptor.
Abstract: T cell therapies have demonstrated long-term efficacy and curative potential for the treatment of some cancers. However, their use is limited by damage to bystander tissues, as seen in graft-versus-host disease after donor lymphocyte infusion, or "on-target, off-tumor" toxicities incurred in some engineered T cell therapies. Nonspecific immunosuppression and irreversible T cell elimination are currently the only means to control such deleterious responses, but at the cost of abrogating therapeutic benefits or causing secondary complications. On the basis of the physiological paradigm of immune inhibitory receptors, we designed antigen-specific inhibitory chimeric antigen receptors (iCARs) to preemptively constrain T cell responses. We demonstrate that CTLA-4- or PD-1-based iCARs can selectively limit cytokine secretion, cytotoxicity, and proliferation induced through the endogenous T cell receptor or an activating chimeric receptor. The initial effect of the iCAR is temporary, thus enabling T cells to function upon a subsequent encounter with the antigen recognized by their activating receptor. iCARs thus provide a dynamic, self-regulating safety switch to prevent, rather than treat, the consequences of inadequate T cell specificity.

Journal ArticleDOI
TL;DR: It is found that regulation of KLF2 and S1P1 provides a switch that dictates whether CD8+ T cells commit to recirculating or tissue-resident memory populations.
Abstract: Cell-mediated immunity critically depends on the localization of lymphocytes at sites of infection. While some memory T cells recirculate, a distinct lineage (resident memory T cells (T(RM) cells)) are embedded in nonlymphoid tissues (NLTs) and mediate potent protective immunity. However, the defining transcriptional basis for the establishment of T(RM) cells is unknown. We found that CD8(+) T(RM) cells lacked expression of the transcription factor KLF2 and its target gene S1pr1 (which encodes S1P1, a receptor for sphingosine 1-phosphate). Forced expression of S1P1 prevented the establishment of T(RM) cells. Cytokines that induced a T(RM) cell phenotype (including transforming growth factor-β (TGF-β), interleukin 33 (IL-33) and tumor-necrosis factor) elicited downregulation of KLF2 expression in a pathway dependent on phosphatidylinositol-3-OH kinase (PI(3)K) and the kinase Akt, which suggested environmental regulation. Hence, regulation of KLF2 and S1P1 provides a switch that dictates whether CD8(+) T cells commit to recirculating or tissue-resident memory populations.

Journal ArticleDOI
TL;DR: Follicular T helper cells are the major reservoir for HIV infection and accumulate during chronic HIV infection.
Abstract: In the present study, we have investigated the distribution of HIV-specific and HIV-infected CD4 T cells within different populations of memory CD4 T cells isolated from lymph nodes of viremic HIV-infected subjects. Four memory CD4 T cell populations were identified on the basis of the expression of CXCR5, PD-1, and Bcl-6: CXCR5(-)PD-1(-)Bcl-6(-), CXCR5(+)PD-1(-)Bcl-6(-), CXCR5(-)PD-1(+)Bcl-6(-), and CXCR5(+)PD-1(+)Bcl-6(+). On the basis of Bcl-6 expression and functional properties (IL-21 production and B cell help), the CXCR5(+)PD-1(+)Bcl-6(+) cell population was considered to correspond to the T follicular helper (Tfh) cell population. We show that Tfh and CXCR5(-)PD-1(+) cell populations are enriched in HIV-specific CD4 T cells, and these populations are significantly increased in viremic HIV-infected subjects as compared with healthy subjects. The Tfh cell population contained the highest percentage of CD4 T cells harboring HIV DNA and was the most efficient in supporting productive infection in vitro. Replication competent HIV was also readily isolated from Tfh cells in subjects with nonprogressive infection and low viremia (<1,000 HIV RNA copies). However, only the percentage of Tfh cells correlated with the levels of plasma viremia. These results demonstrate that Tfh cells serve as the major CD4 T cell compartment for HIV infection, replication, and production.

Journal ArticleDOI
TL;DR: Indoleamine 2,3-dioxygenase suppresses infiltration and accumulation of tumor-reactive T cells in the context of anti–CTLA-4 immunotherapy and attenuates the anti-tumor efficacy.
Abstract: The cytotoxic T lymphocyte antigen-4 (CTLA-4)–blocking antibody ipilimumab results in durable responses in metastatic melanoma, though therapeutic benefit has been limited to a fraction of patients. This calls for identification of resistance mechanisms and development of combinatorial strategies. Here, we examine the inhibitory role of indoleamine 2,3-dioxygenase (IDO) on the antitumor efficacy of CTLA-4 blockade. In IDO knockout mice treated with anti–CTLA-4 antibody, we demonstrate a striking delay in B16 melanoma tumor growth and increased overall survival when compared with wild-type mice. This was also observed with antibodies targeting PD-1–PD-L1 and GITR. To highlight the therapeutic relevance of these findings, we show that CTLA-4 blockade strongly synergizes with IDO inhibitors to mediate rejection of both IDO-expressing and nonexpressing poorly immunogenic tumors, emphasizing the importance of the inhibitory role of both tumor- and host-derived IDO. This effect was T cell dependent, leading to enhanced infiltration of tumor-specific effector T cells and a marked increase in the effector-to-regulatory T cell ratios in the tumors. Overall, these data demonstrate the immunosuppressive role of IDO in the context of immunotherapies targeting immune checkpoints and provide a strong incentive to clinically explore combination therapies using IDO inhibitors irrespective of IDO expression by the tumor cells.

Journal ArticleDOI
TL;DR: It is suggested that targeting T cell dysfunctional mechanisms and introducing/promoting T cell stemness are important approaches to treat patients with cancer.

Journal ArticleDOI
TL;DR: This work identifies the following additional function for memory CD8+ T cells that persist at front-line sites of microbial exposure: to serve as local sensors of previously encountered antigens that precipitate innate-like alarm signals and draw circulating memory T cells into the tissue.
Abstract: Tissue-resident effector memory T cells respond rapidly after reencountering antigen. Masopust and colleagues show that memory CD8+ T cells also induce the release of chemokines, then recruit more memory cells to the site of infection.

Journal ArticleDOI
TL;DR: Evidence is provided for an immunosuppressive role of tumor-derived lactate in inhibiting innate immune response against developing tumors via regulation of MDSC and NK cell activity.
Abstract: In this study, we explore the hypothesis that enhanced production of lactate by tumor cells, because of high glycolytic activity, results in inhibition of host immune response to tumor cells. Lactate dehydrogenase-A (LDH-A), responsible for conversion of pyruvate to lactate, is highly expressed in tumor cells. Lentiviral vector-mediated LDH-A short hairpin RNA knockdown Pan02 pancreatic cancer cells injected in C57BL/6 mice developed smaller tumors than mice injected with Pan02 cells. A decrease occurred in the frequency of myeloid-derived suppressor cells (MDSCs) in the spleens of mice carrying LDH-A-depleted tumors. NK cells from LDH-A-depleted tumors had improved cytolytic function. Exogenous lactate increased the frequency of MDSCs generated from mouse bone marrow cells with GM-CSF and IL-6 in vitro. Lactate pretreatment of NK cells in vitro inhibited cytolytic function of both human and mouse NK cells. This reduction of NK cytotoxic activity was accompanied by lower expression of perforin and granzyme in NK cells. The expression of NKp46 was decreased in lactate-treated NK cells. These studies strongly suggest that tumor-derived lactate inhibits NK cell function via direct inhibition of cytolytic function as well as indirectly by increasing the numbers of MDSCs that inhibit NK cytotoxicity. Depletion of glucose levels using a ketogenic diet to lower lactate production by glycolytic tumors resulted in smaller tumors, decreased MDSC frequency, and improved antitumor immune response. These studies provide evidence for an immunosuppressive role of tumor-derived lactate in inhibiting innate immune response against developing tumors via regulation of MDSC and NK cell activity.

Journal ArticleDOI
TL;DR: Higher magnitude and more polyfunctional responses for HLA alleles associated with decreased susceptibility to severe disease are demonstrated, suggesting that a vigorous response by multifunctional CD8+ T cells is associated with protection from dengue virus disease.
Abstract: The role of CD8(+) T cells in dengue virus infection and subsequent disease manifestations is not fully understood. According to the original antigenic sin theory, skewing of T-cell responses induced by primary infection with one serotype causes less effective response upon secondary infection with a different serotype, predisposing individuals to severe disease. A comprehensive analysis of CD8(+) responses in the general population from the Sri Lankan hyperendemic area, involving the measurement of ex vivo IFNγ responses associated with more than 400 epitopes, challenges the original antigenic sin theory. Although skewing of responses toward primary infecting viruses was detected, this was not associated with impairment of responses either qualitatively or quantitatively. Furthermore, we demonstrate higher magnitude and more polyfunctional responses for HLA alleles associated with decreased susceptibility to severe disease, suggesting that a vigorous response by multifunctional CD8(+) T cells is associated with protection from dengue virus disease.

Journal ArticleDOI
TL;DR: It is shown that anti-CD47 antibody treatment not only enables macrophage phagocytosis of cancer but also can initiate an antitumor cytotoxic T-cell immune response.
Abstract: Mobilization of the T-cell response against cancer has the potential to achieve long-lasting cures. However, it is not known how to harness antigen-presenting cells optimally to achieve an effective antitumor T-cell response. In this study, we show that anti-CD47 antibody–mediated phagocytosis of cancer by macrophages can initiate an antitumor T-cell immune response. Using the ovalbumin model antigen system, anti-CD47 antibody–mediated phagocytosis of cancer cells by macrophages resulted in increased priming of OT-I T cells [cluster of differentiation 8-positive (CD8+)] but decreased priming of OT-II T cells (CD4+). The CD4+ T-cell response was characterized by a reduction in forkhead box P3-positive (Foxp3+) regulatory T cells. Macrophages following anti-CD47–mediated phagocytosis primed CD8+ T cells to exhibit cytotoxic function in vivo. This response protected animals from tumor challenge. We conclude that anti-CD47 antibody treatment not only enables macrophage phagocytosis of cancer but also can initiate an antitumor cytotoxic T-cell immune response.

Journal ArticleDOI
TL;DR: It is found that HIFs and oxygen influenced the expression of pivotal transcription, effector and costimulatory-inhibitory molecules of CTLs, which was relevant to strategies that promote the clearance of viruses and tumors.
Abstract: Cytolytic activity by CD8(+) cytotoxic T lymphocytes (CTLs) is a powerful strategy for the elimination of intracellular pathogens and tumor cells. The destructive capacity of CTLs is progressively dampened during chronic infection, yet the environmental cues and molecular pathways that influence immunological 'exhaustion' remain unclear. Here we found that CTL immunity was regulated by the central transcriptional response to hypoxia, which is controlled in part by hypoxia-inducible factors (HIFs) and the von Hippel-Lindau tumor suppressor VHL. Loss of VHL, the main negative regulator of HIFs, led to lethal CTL-mediated immunopathology during chronic infection, and VHL-deficient CTLs displayed enhanced control of persistent viral infection and neoplastic growth. We found that HIFs and oxygen influenced the expression of pivotal transcription, effector and costimulatory-inhibitory molecules of CTLs, which was relevant to strategies that promote the clearance of viruses and tumors.

Journal ArticleDOI
TL;DR: T cells modified with an optimized ROR1-CAR have significant antitumor efficacy in a preclinical model in vivo, suggesting they may be useful to treat R OR1+ tumors in clinical applications.
Abstract: Purpose: The adoptive transfer of T cells modified to express a chimeric antigen receptor (CAR) comprised of an extracellular single-chain antibody (scFV) fragment specific for a tumor cell surface molecule, and linked to an intracellular signaling module, has activity in advanced malignancies. The receptor tyrosine kinase–like orphan receptor 1 (ROR1) is a tumor-associated molecule expressed in prevalent B-lymphoid and epithelial cancers and is absent on normal mature B cells and vital tissues, making it a candidate for CAR T-cell therapy. Experimental Design: We constructed ROR1-CARs from scFVs with different affinities and containing extracellular IgG4-Fc spacer domains of different lengths, and evaluated the ability of T cells expressing each CAR to recognize ROR1 + hematopoietic and epithelial tumors in vitro , and to eliminate human mantle cell lymphoma (MCL) engrafted into immunodeficient mice. Results: ROR1-CARs containing a short “Hinge-only” extracellular spacer conferred superior lysis of ROR1 + tumor cells and induction of T-cell effector functions compared with CARs with long “Hinge-CH2-CH3” spacers. CARs derived from a higher affinity scFV conferred maximum T-cell effector function against primary CLL and ROR1 + epithelial cancer lines in vitro without inducing activation-induced T-cell death. T cells modified with an optimal ROR1-CAR were equivalently effective as CD19-CAR–modified T cells in mediating regression of JeKo-1 MCL in immunodeficient mice. Conclusions: Our results show that customizing spacer design and increasing affinity of ROR1-CARs enhances T-cell effector function and recognition of ROR1 + tumors. T cells modified with an optimized ROR1-CAR have significant antitumor efficacy in a preclinical model in vivo , suggesting they may be useful to treat ROR1 + tumors in clinical applications. Clin Cancer Res; 19(12); 3153–64. ©2013 AACR .

Journal ArticleDOI
TL;DR: Ipilimumab (anti-CTLA-4) has been tested as a single agent in patients with pancreatic ductal adenocarcinoma and in combination with GVAX has the potential for clinical benefit and should be evaluated in a larger study.
Abstract: Preclinical reports support the concept of synergy between cancer vaccines and immune checkpoint blockade in nonimmunogenic tumors. In particular, cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) antibodies have been successfully combined with GM-CSF cell-based vaccines (GVAX). Ipilimumab (anti-

Journal ArticleDOI
TL;DR: Using genetic modification, highly active, self-propagating 'slayers' of cancer cells can be generated.
Abstract: T cells have the capacity to eradicate diseased cells, but tumours present considerable challenges that render T cells ineffectual. Cancer cells often make themselves almost 'invisible' to the immune system, and they sculpt a microenvironment that suppresses T cell activity, survival and migration. Genetic engineering of T cells can be used therapeutically to overcome these challenges. T cells can be taken from the blood of cancer patients and then modified with genes encoding receptors that recognize cancer-specific antigens. Additional genes can be used to enable resistance to immunosuppression, to extend survival and to facilitate the penetration of engineered T cells into tumours. Using genetic modification, highly active, self-propagating 'slayers' of cancer cells can be generated.

Journal ArticleDOI
TL;DR: The findings clinically validate OX40 as a potent immune-stimulating target for treatment in patients with cancer, providing a generalizable tool to favorably influence the antitumor properties of circulating T cells, B cells, and intratumoral regulatory T cells.
Abstract: OX40 is a potent costimulatory receptor that can potentiate T-cell receptor signaling on the surface of T lymphocytes, leading to their activation by a specifically recognized antigen. In particular, OX40 engagement by ligands present on dendritic cells dramatically increases the proliferation, effector function, and survival of T cells. Preclinical studies have shown that OX40 agonists increase antitumor immunity and improve tumor-free survival. In this study, we performed a phase I clinical trial using a mouse monoclonal antibody (mAb) that agonizes human OX40 signaling in patients with advanced cancer. Patients treated with one course of the anti-OX40 mAb showed an acceptable toxicity profile and regression of at least one metastatic lesion in 12 of 30 patients. Mechanistically, this treatment increased T and B cell responses to reporter antigen immunizations, led to preferential upregulation of OX40 on CD4(+) FoxP3(+) regulatory T cells in tumor-infiltrating lymphocytes, and increased the antitumor reactivity of T and B cells in patients with melanoma. Our findings clinically validate OX40 as a potent immune-stimulating target for treatment in patients with cancer, providing a generalizable tool to favorably influence the antitumor properties of circulating T cells, B cells, and intratumoral regulatory T cells.

Journal ArticleDOI
TL;DR: Clinicians have added clarity to this diagnosis and identified defects in 3 genes that can cause NK cell deficiency, as well as some of the underlying biology.
Abstract: Natural killer (NK) cells are part of the innate immune defense against infection and cancer and are especially useful in combating certain viral pathogens. The utility of NK cells in human health has been underscored by a growing number of persons who are deficient in NK cells and/or their functions. This can be in the context of a broader genetically defined congenital immunodeficiency, of which there are more than 40 presently known to impair NK cells. However, the abnormality of NK cells in certain cases represents the majority immunologic defect. In aggregate, these conditions are termed NK cell deficiency. Recent advances have added clarity to this diagnosis and identified defects in 3 genes that can cause NK cell deficiency, as well as some of the underlying biology. Appropriate consideration of these diagnoses and patients raises the potential for rational therapeutic options and further innovation.

Journal ArticleDOI
TL;DR: Findings support the idea that APM defects are immune escape mechanisms that disrupt the tumor cells' ability to be recognized and killed by tumor antigen-specific cytotoxic CD8(+) T cells.
Abstract: The surface presentation of peptides by major histocompatibility complex (MHC) class I molecules is critical to all CD8(+) T-cell adaptive immune responses, including those against tumors. The generation of peptides and their loading on MHC class I molecules is a multistep process involving multiple molecular species that constitute the so-called antigen processing and presenting machinery (APM). The majority of class I peptides begin as proteasome degradation products of cytosolic proteins. Once transported into the endoplasmic reticulum by TAP (transporter associated with antigen processing), peptides are not bound randomly by class I molecules but are chosen by length and sequence, with peptidases editing the raw peptide pool. Aberrations in APM genes and proteins have frequently been observed in human tumors and found to correlate with relevant clinical variables, including tumor grade, tumor stage, disease recurrence, and survival. These findings support the idea that APM defects are immune escape mechanisms that disrupt the tumor cells' ability to be recognized and killed by tumor antigen-specific cytotoxic CD8(+) T cells. Detailed knowledge of APM is crucial for the optimization of T cell-based immunotherapy protocols.

Journal ArticleDOI
09 May 2013-Cell
TL;DR: The mechanism that underlies this division of labor by tracking the progeny of single naive T cells is studied, which results from averaging the diverse behaviors of individual clones, which are instructed in part by the strength of TCR signaling.

Journal ArticleDOI
24 May 2013-Science
TL;DR: The findings suggest that CD8+ T cell recognition is more flexible than had been thought, and that the focused epitope recognition profiles of conventional CD8- T cell responses may be primarily restricted by immunoregulation during priming rather than by intrinsic limitations in antigen processing/presentation or in T cell receptor repertoire.
Abstract: CD8(+) T cell responses focus on a small fraction of pathogen- or vaccine-encoded peptides, and for some pathogens, these restricted recognition hierarchies limit the effectiveness of antipathogen immunity. We found that simian immunodeficiency virus (SIV) protein-expressing rhesus cytomegalovirus (RhCMV) vectors elicit SIV-specific CD8(+) T cells that recognize unusual, diverse, and highly promiscuous epitopes, including dominant responses to epitopes restricted by class II major histocompatibility complex (MHC) molecules. Induction of canonical SIV epitope-specific CD8(+) T cell responses is suppressed by the RhCMV-encoded Rh189 gene (corresponding to human CMV US11), and the promiscuous MHC class I- and class II-restricted CD8(+) T cell responses occur only in the absence of the Rh157.5, Rh157.4, and Rh157.6 (human CMV UL128, UL130, and UL131) genes. Thus, CMV vectors can be genetically programmed to achieve distinct patterns of CD8(+) T cell epitope recognition.