scispace - formally typeset
Search or ask a question

Showing papers on "Cytotoxic T cell published in 2020"


Journal ArticleDOI
15 Jul 2020-Nature
TL;DR: Infection with betacoronaviruses induces multi-specific and long-lasting T cell immunity against the structural N protein, and SARS-CoV-2-reactive T cells were found in individuals who had recovered from SARS or COVID-19 and in unexposed donors, although with different patterns of immunoreactivity.
Abstract: Memory T cells induced by previous pathogens can shape susceptibility to, and the clinical severity of, subsequent infections1. Little is known about the presence in humans of pre-existing memory T cells that have the potential to recognize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we studied T cell responses against the structural (nucleocapsid (N) protein) and non-structural (NSP7 and NSP13 of ORF1) regions of SARS-CoV-2 in individuals convalescing from coronavirus disease 2019 (COVID-19) (n = 36). In all of these individuals, we found CD4 and CD8 T cells that recognized multiple regions of the N protein. Next, we showed that patients (n = 23) who recovered from SARS (the disease associated with SARS-CoV infection) possess long-lasting memory T cells that are reactive to the N protein of SARS-CoV 17 years after the outbreak of SARS in 2003; these T cells displayed robust cross-reactivity to the N protein of SARS-CoV-2. We also detected SARS-CoV-2-specific T cells in individuals with no history of SARS, COVID-19 or contact with individuals who had SARS and/or COVID-19 (n = 37). SARS-CoV-2-specific T cells in uninfected donors exhibited a different pattern of immunodominance, and frequently targeted NSP7 and NSP13 as well as the N protein. Epitope characterization of NSP7-specific T cells showed the recognition of protein fragments that are conserved among animal betacoronaviruses but have low homology to 'common cold' human-associated coronaviruses. Thus, infection with betacoronaviruses induces multi-specific and long-lasting T cell immunity against the structural N protein. Understanding how pre-existing N- and ORF1-specific T cells that are present in the general population affect the susceptibility to and pathogenesis of SARS-CoV-2 infection is important for the management of the current COVID-19 pandemic.

1,636 citations



Journal ArticleDOI
TL;DR: The identification of T cell responses associated with milder disease will support an understanding of protective immunity and highlights the potential of including non-spike proteins within future COVID-19 vaccine design.
Abstract: The development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and therapeutics will depend on understanding viral immunity. We studied T cell memory in 42 patients following recovery from COVID-19 (28 with mild disease and 14 with severe disease) and 16 unexposed donors, using interferon-γ-based assays with peptides spanning SARS-CoV-2 except ORF1. The breadth and magnitude of T cell responses were significantly higher in severe as compared with mild cases. Total and spike-specific T cell responses correlated with spike-specific antibody responses. We identified 41 peptides containing CD4+ and/or CD8+ epitopes, including six immunodominant regions. Six optimized CD8+ epitopes were defined, with peptide–MHC pentamer-positive cells displaying the central and effector memory phenotype. In mild cases, higher proportions of SARS-CoV-2-specific CD8+ T cells were observed. The identification of T cell responses associated with milder disease will support an understanding of protective immunity and highlights the potential of including non-spike proteins within future COVID-19 vaccine design. Questions have arisen as to whether patients with severe COVID-19 disease can generate a T cell response against SARS-CoV-2. Tao Dong and colleagues report that convalescent patients with COVID-19 harbor functional memory CD4+ and CD8+ T cells that recognize multiple epitopes that span the viral proteome. CD4+ T cells predominated the memory response in patients with severe disease, whereas higher proportions of CD8+ T cells were found in patients with mild disease.

982 citations


Journal ArticleDOI
23 Jan 2020-Nature
TL;DR: Immune profiling of the tumour microenvironment of soft-tissue sarcoma identifies a group of patients with high levels of B-cell infiltration and tertiary lymphoid structures that have improved survival and a high response rate to immune checkpoint blockade therapy.
Abstract: Soft-tissue sarcomas represent a heterogeneous group of cancer, with more than 50 histological subtypes1,2. The clinical presentation of patients with different subtypes is often atypical, and responses to therapies such as immune checkpoint blockade vary widely3,4. To explain this clinical variability, here we study gene expression profiles in 608 tumours across subtypes of soft-tissue sarcoma. We establish an immune-based classification on the basis of the composition of the tumour microenvironment and identify five distinct phenotypes: immune-low (A and B), immune-high (D and E), and highly vascularized (C) groups. In situ analysis of an independent validation cohort shows that class E was characterized by the presence of tertiary lymphoid structures that contain T cells and follicular dendritic cells and are particularly rich in B cells. B cells are the strongest prognostic factor even in the context of high or low CD8+ T cells and cytotoxic contents. The class-E group demonstrated improved survival and a high response rate to PD1 blockade with pembrolizumab in a phase 2 clinical trial. Together, this work confirms the immune subtypes in patients with soft-tissue sarcoma, and unravels the potential of B-cell-rich tertiary lymphoid structures to guide clinical decision-making and treatments, which could have broader applications in other diseases. Immune profiling of the tumour microenvironment of soft-tissue sarcoma identifies a group of patients with high levels of B-cell infiltration and tertiary lymphoid structures that have improved survival and a high response rate to immune checkpoint blockade therapy.

981 citations


Journal ArticleDOI
20 Mar 2020-Cancers
TL;DR: The role of each immune checkpoint inhibitor (ICI), the landmark trials which led to their FDA approval, and the strength of the evidence per National Comprehensive Cancer Network (NCCN) are discussed, which is broadly utilized by medical oncologists and hematologists in their daily practice.
Abstract: Cancer is associated with higher morbidity and mortality and is the second leading cause of death in the US. Further, in some nations, cancer has overtaken heart disease as the leading cause of mortality. Identification of molecular mechanisms by which cancerous cells evade T cell-mediated cytotoxic damage has led to the modern era of immunotherapy in cancer treatment. Agents that release these immune brakes have shown activity to recover dysfunctional T cells and regress various cancer. Both cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and Programmed Death-1 (PD-1) play their role as physiologic brakes on unrestrained cytotoxic T effector function. CTLA-4 (CD 152) is a B7/CD28 family; it mediates immunosuppression by indirectly diminishing signaling through the co-stimulatory receptor CD28. Ipilimumab is the first and only FDA-approved CTLA-4 inhibitor; PD-1 is an inhibitory transmembrane protein expressed on T cells, B cells, Natural Killer cells (NKs), and Myeloid-Derived Suppressor Cells (MDSCs). Programmed Death-Ligand 1 (PD-L1) is expressed on the surface of multiple tissue types, including many tumor cells and hematopoietic cells. PD-L2 is more restricted to hematopoietic cells. Blockade of the PD-1 /PDL-1 pathway can enhance anti-tumor T cell reactivity and promotes immune control over the cancerous cells. Since the FDA approval of ipilimumab (human IgG1 k anti-CTLA-4 monoclonal antibody) in 2011, six more immune checkpoint inhibitors (ICIs) have been approved for cancer therapy. PD-1 inhibitors nivolumab, pembrolizumab, cemiplimab and PD-L1 inhibitors atezolizumab, avelumab, and durvalumab are in the current list of the approved agents in addition to ipilimumab. In this review paper, we discuss the role of each immune checkpoint inhibitor (ICI), the landmark trials which led to their FDA approval, and the strength of the evidence per National Comprehensive Cancer Network (NCCN), which is broadly utilized by medical oncologists and hematologists in their daily practice.

724 citations


Journal ArticleDOI
11 Mar 2020-Nature
TL;DR: The gasdermin E protein is shown to act as a tumour suppressor: it is cleaved by caspase 3 and granzyme B and leads to pyroptosis of cancer cells, provoking an immune response to the tumour.
Abstract: Cleavage of the gasdermin proteins to produce pore-forming amino-terminal fragments causes inflammatory cell death (pyroptosis)1. Gasdermin E (GSDME, also known as DFNA5)—mutated in familial ageing-related hearing loss2—can be cleaved by caspase 3, thereby converting noninflammatory apoptosis to pyroptosis in GSDME-expressing cells3–5. GSDME expression is suppressed in many cancers, and reduced GSDME levels are associated with decreased survival as a result of breast cancer2,6, suggesting that GSDME might be a tumour suppressor. Here we show that 20 of 22 tested cancer-associated GSDME mutations reduce GSDME function. In mice, knocking out Gsdme in GSDME-expressing tumours enhances, whereas ectopic expression in Gsdme-repressed tumours inhibits, tumour growth. This tumour suppression is mediated by killer cytotoxic lymphocytes: it is abrogated in perforin-deficient mice or mice depleted of killer lymphocytes. GSDME expression enhances the phagocytosis of tumour cells by tumour-associated macrophages, as well as the number and functions of tumour-infiltrating natural-killer and CD8+ T lymphocytes. Killer-cell granzyme B also activates caspase-independent pyroptosis in target cells by directly cleaving GSDME at the same site as caspase 3. Uncleavable or pore-defective GSDME proteins are not tumour suppressive. Thus, tumour GSDME acts as a tumour suppressor by activating pyroptosis, enhancing anti-tumour immunity. The gasdermin E protein is shown to act as a tumour suppressor: it is cleaved by caspase 3 and granzyme B and leads to pyroptosis of cancer cells, provoking an immune response to the tumour.

711 citations


Journal ArticleDOI
29 May 2020-Science
TL;DR: It is shown that granzyme A cleaves and activates gasdermin B (GSDMB), a central player in the highly inflammatory cell death process known as pyroptosis, suggesting that this pathway may be a target for future cancer immunotherapies.
Abstract: Cytotoxic lymphocyte-mediated immunity relies on granzymes. Granzymes are thought to kill target cells by inducing apoptosis, although the underlying mechanisms are not fully understood. Here, we report that natural killer cells and cytotoxic T lymphocytes kill gasdermin B (GSDMB)-positive cells through pyroptosis, a form of proinflammatory cell death executed by the gasdermin family of pore-forming proteins. Killing results from the cleavage of GSDMB by lymphocyte-derived granzyme A (GZMA), which unleashes its pore-forming activity. Interferon-γ (IFN-γ) up-regulates GSDMB expression and promotes pyroptosis. GSDMB is highly expressed in certain tissues, particularly digestive tract epithelia, including derived tumors. Introducing GZMA-cleavable GSDMB into mouse cancer cells promotes tumor clearance in mice. This study establishes gasdermin-mediated pyroptosis as a cytotoxic lymphocyte-killing mechanism, which may enhance antitumor immunity.

599 citations


Journal ArticleDOI
TL;DR: The CD8+ T cell states that have been identified in human tumours and the potential roles they play in tumour control as well as how they are influenced by immune checkpoint blockade are outlined.
Abstract: The T cell infiltrates that are formed in human cancers are a modifier of natural disease progression and also determine the probability of clinical response to cancer immunotherapies. Recent technological advances that allow the single-cell analysis of phenotypic and transcriptional states have revealed a vast heterogeneity of intratumoural T cell states, both within and between patients, and the observation of this heterogeneity makes it critical to understand the relationship between individual T cell states and therapy response. This Review covers our current knowledge of the T cell states that are present in human tumours and the role that different T cell populations have been hypothesized to play within the tumour microenvironment, with a particular focus on CD8+ T cells. The three key models that are discussed herein are as follows: (1) the dysfunction of T cells in human cancer is associated with a change in T cell functionality rather than inactivity; (2) antigen recognition in the tumour microenvironment is an important driver of T cell dysfunctionality and the presence of dysfunctional T cells can hence be used as a proxy for the presence of a tumour-reactive T cell compartment; (3) a less dysfunctional population of tumour-reactive T cells may be required to drive a durable response to T cell immune checkpoint blockade.

570 citations


Journal ArticleDOI
TL;DR: The single-cell transcriptional landscape of moderate, severe and convalescent cases of patients with COVID-19 describes the dynamic nature of immune responses during disease progression, and shows a deranged interferon response, profound immune exhaustion with skewed T cell receptor repertoire and broad T cell expansion.
Abstract: In coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the relationship between disease severity and the host immune response is not fully understood. Here we performed single-cell RNA sequencing in peripheral blood samples of 5 healthy donors and 13 patients with COVID-19, including moderate, severe and convalescent cases. Through determining the transcriptional profiles of immune cells, coupled with assembled T cell receptor and B cell receptor sequences, we analyzed the functional properties of immune cells. Most cell types in patients with COVID-19 showed a strong interferon-α response and an overall acute inflammatory response. Moreover, intensive expansion of highly cytotoxic effector T cell subsets, such as CD4+ effector-GNLY (granulysin), CD8+ effector-GNLY and NKT CD160, was associated with convalescence in moderate patients. In severe patients, the immune landscape featured a deranged interferon response, profound immune exhaustion with skewed T cell receptor repertoire and broad T cell expansion. These findings illustrate the dynamic nature of immune responses during disease progression.

437 citations


Journal ArticleDOI
08 Jan 2020-Nature
TL;DR: An integrated analysis of several cohorts shows that clonal, antigen-experienced T cells are found in the cerebrospinal fluid of patients with Alzheimer’s disease, suggesting that the adaptive immune system has a role in age-related neurodegeneration.
Abstract: Alzheimer’s disease is an incurable neurodegenerative disorder in which neuroinflammation has a critical function1. However, little is known about the contribution of the adaptive immune response in Alzheimer’s disease2. Here, using integrated analyses of multiple cohorts, we identify peripheral and central adaptive immune changes in Alzheimer’s disease. First, we performed mass cytometry of peripheral blood mononuclear cells and discovered an immune signature of Alzheimer’s disease that consists of increased numbers of CD8+ T effector memory CD45RA+ (TEMRA) cells. In a second cohort, we found that CD8+ TEMRA cells were negatively associated with cognition. Furthermore, single-cell RNA sequencing revealed that T cell receptor (TCR) signalling was enhanced in these cells. Notably, by using several strategies of single-cell TCR sequencing in a third cohort, we discovered clonally expanded CD8+ TEMRA cells in the cerebrospinal fluid of patients with Alzheimer’s disease. Finally, we used machine learning, cloning and peptide screens to demonstrate the specificity of clonally expanded TCRs in the cerebrospinal fluid of patients with Alzheimer’s disease to two separate Epstein–Barr virus antigens. These results reveal an adaptive immune response in the blood and cerebrospinal fluid in Alzheimer’s disease and provide evidence of clonal, antigen-experienced T cells patrolling the intrathecal space of brains affected by age-related neurodegeneration. An integrated analysis of several cohorts shows that clonal, antigen-experienced T cells are found in the cerebrospinal fluid of patients with Alzheimer’s disease, suggesting that the adaptive immune system has a role in age-related neurodegeneration.

423 citations


Journal ArticleDOI
TL;DR: The association between IL-6 serum levels and the impairment of cytotoxic activity suggests the possibility that targeting this cytokine may restore anti-viral mechanisms.
Abstract: BACKGROUNDCoronavirus disease 19 (COVID-19) is an emerging infectious disease caused by SARS-CoV-2. Antiviral immune response is crucial to achieve pathogen clearance; however, in some patients an excessive and aberrant host immune response can lead to an acute respiratory distress syndrome. The comprehension of the mechanisms that regulate pathogen elimination, immunity, and pathology is essential to better characterize disease progression and widen the spectrum of therapeutic options.METHODSWe performed a flow cytometric characterization of immune cell subsets from 30 patients with COVID-19 and correlated these data with clinical outcomes.RESULTSPatients with COVID-19 showed decreased numbers of circulating T, B, and NK cells and exhibited a skewing of CD8+ T cells toward a terminally differentiated/senescent phenotype. In agreement, CD4+ T and CD8+ T, but also NK cells, displayed reduced antiviral cytokine production capability. Moreover, a reduced cytotoxic potential was identified in patients with COVID-19, particularly in those who required intensive care. The latter group of patients also showed increased serum IL-6 levels that inversely correlated to the frequency of granzyme A-expressing NK cells. Off-label treatment with tocilizumab restored the cytotoxic potential of NK cells.CONCLUSIONThe association between IL-6 serum levels and the impairment of cytotoxic activity suggests the possibility that targeting this cytokine may restore antiviral mechanisms.FUNDINGThis study was supported by funds from the Department of Experimental and Clinical Medicine of University of Florence (the ex-60% fund and the "Excellence Departments 2018-2022 Project") derived from Ministero dell'Istruzione, dell'Universita e della Ricerca (Italy).

Journal ArticleDOI
25 Nov 2020-Cell
TL;DR: In hospitalized COVID-19 patients, a strong cytotoxic TFH response was observed early in the illness which correlated negatively with antibody levels to SARS-CoV-2 spike protein, and these analyses provide insights into the gene expression patterns of Sars-Cov-2-reactive CD4+ T cells in distinct disease severities.

Journal ArticleDOI
TL;DR: Current challenges and future promise of CAR-NK cells as a novel cellular immunotherapy in cancer are discussed, and they could be engineered to target diverse antigens, enhance proliferation and persistence in vivo, increase infiltration into solid tumours, overcome resistant tumour microenvironment, and ultimately achieve an effective anti-tumour response.

Journal ArticleDOI
25 Jun 2020-Cell
TL;DR: A gene signature of cytotoxic CD4+ T cells in tumors predicts a clinical response in 244 metastatic bladder cancer patients treated with anti-PD-L1, and several tumor-specific states are found, including multiple distinct states of regulatory T cells.


Journal ArticleDOI
15 Oct 2020-Cell
TL;DR: The first open-label, phase Ib clinical trial of a personalized neoantigen-based vaccine, NEO-PV-01, in combination with PD-1 blockade in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer demonstrated that the regimen was safe, with no treatment-related serious adverse events observed.

Journal ArticleDOI
TL;DR: The key role that natural killer (NK) cells play in driving an antitumour immune response throughout the progression of cancer from its initial development to its metastatic spread and eventual treatment is discussed, defined herein as the cancer–NK cell immunity cycle.
Abstract: Immunotherapy with checkpoint blockade induces rapid and durable immune control of cancer in some patients and has driven a monumental shift in cancer treatment Neoantigen-specific CD8+ T cells are at the forefront of current immunotherapy strategies, and the majority of drug discovery and clinical trials revolve around further harnessing these immune effectors Yet the immune system contains a diverse range of antitumour effector cells, and these must function in a coordinated and synergistic manner to overcome the immune-evasion mechanisms used by tumours and achieve complete control with tumour eradication A key antitumour effector is the natural killer (NK) cells, cytotoxic innate lymphocytes present at high frequency in the circulatory system and identified by their exquisite ability to spontaneously detect and lyse transformed or stressed cells Emerging data show a role for intratumoural NK cells in driving immunotherapy response and, accordingly, there have been renewed efforts to further elucidate and target the pathways controlling NK cell antitumour function In this Review, we discuss recent clinical evidence that NK cells are a key immune constituent in the protective antitumour immune response and highlight the major stages of the cancer-NK cell immunity cycle We also perform a new analysis of publicly available transcriptomic data to provide an overview of the prognostic value of NK cell gene expression in 25 tumour types Furthermore, we discuss how the role of NK cells evolves with tumour progression, presenting new opportunities to target NK cell function to enhance cancer immunotherapy response rates across a more diverse range of cancers

Journal ArticleDOI
TL;DR: The authors review the clinical results obtained with bispecific antibodies to date and discuss the challenges associated with this therapeutic approach and the proposed solutions aimed at preventing or minimizing toxicities, countering immune escape and broadening the indications for these treatments.
Abstract: Immuno-oncology approaches have entered clinical practice, with tremendous progress particularly in the field of T cell-engaging therapies over the past decade. Herein, we provide an overview of the current status of bispecific T cell engager (BiTE) therapy, considering the unprecedented new indication for such therapy in combating minimal (or measurable) residual disease in patients with acute lymphoblastic leukaemia, and the development of novel approaches based on this concept. Key aspects that we discuss include the current clinical data, challenges relating to treatment administration and patient monitoring, toxicities and resistance to treatment, and novel strategies to overcome these hurdles as well as to broaden the indications for BiTE therapy, particularly to common solid cancers. Elucidation of mechanisms of resistance and immune escape and new technologies used in drug development pave the way for new and more-effective therapies and rational combinatorial approaches. In particular, we highlight novel therapeutic agents, such as bifunctional checkpoint-inhibitory T cell engagers (CiTEs), simultaneous multiple interaction T cell engagers (SMITEs), trispecific killer engagers (TriKEs) and BiTE-expressing chimeric antigen receptor (CAR) T cells (CART.BiTE cells), designed to integrate various immune functions into one molecule or a single cellular vector and thereby enhance efficacy without compromising safety. We also discuss the targeting of intracellular tumour-associated epitopes using bispecific constructs with T cell receptor (TCR)-derived, rather than an antibody-based, antigen-recognition domains, termed immune-mobilizing monoclonal TCRs against cancer (ImmTACs), which might broaden the armamentarium of T cell-engaging therapies. The use of bispecific antibodies to engage cells of the immune system that are cytotoxic to cancer cells is a major focus of cancer immunotherapy, with approvals for the treatment of acute lymphoblastic leukaemia. Here, the authors review the clinical results obtained with bispecific antibodies to date. They also discuss the challenges associated with this therapeutic approach and the proposed solutions aimed at preventing or minimizing toxicities, countering immune escape and broadening the indications for these treatments.

Journal ArticleDOI
TL;DR: It is demonstrated that the SARS-CoV-2 spike contains sequence and structure motifs highly similar to those of a bacterial superantigen and may directly bind T cell receptors, and the TCR repertoire in adult COVID-19 patients demonstrates that those with severe hyperinflammatory disease exhibit TCR skewing consistent withsuperantigen activation.
Abstract: Multisystem Inflammatory Syndrome in Children (MIS-C) associated with COVID-19 is a newly recognized condition in children with recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These children and adult patients with severe hyperinflammation present with a constellation of symptoms that strongly resemble toxic shock syndrome, an escalation of the cytotoxic adaptive immune response triggered upon the binding of pathogenic superantigens to T cell receptors (TCRs) and/or major histocompatibility complex class II (MHCII) molecules. Here, using structure-based computational models, we demonstrate that the SARS-CoV-2 spike (S) glycoprotein exhibits a high-affinity motif for binding TCRs, and may form a ternary complex with MHCII. The binding epitope on S harbors a sequence motif unique to SARS-CoV-2 (not present in other SARS-related coronaviruses), which is highly similar in both sequence and structure to the bacterial superantigen staphylococcal enterotoxin B. This interaction between the virus and human T cells could be strengthened by a rare mutation (D839Y/N/E) from a European strain of SARS-CoV-2. Furthermore, the interfacial region includes selected residues from an intercellular adhesion molecule (ICAM)-like motif shared between the SARS viruses from the 2003 and 2019 pandemics. A neurotoxin-like sequence motif on the receptor-binding domain also exhibits a high tendency to bind TCRs. Analysis of the TCR repertoire in adult COVID-19 patients demonstrates that those with severe hyperinflammatory disease exhibit TCR skewing consistent with superantigen activation. These data suggest that SARS-CoV-2 S may act as a superantigen to trigger the development of MIS-C as well as cytokine storm in adult COVID-19 patients, with important implications for the development of therapeutic approaches.

Journal ArticleDOI
TL;DR: Heterogeneity in the cellular and molecular features ofCAR T cell infusion products contributes to variation in efficacy and toxicity after axi-cel therapy in LBCL, and that day 7 molecular response might serve as an early predictor of CAR T cell efficacy.
Abstract: Autologous chimeric antigen receptor (CAR) T cell therapies targeting CD19 have high efficacy in large B cell lymphomas (LBCLs), but long-term remissions are observed in less than half of patients, and treatment-associated adverse events, such as immune effector cell-associated neurotoxicity syndrome (ICANS), are a clinical challenge. We performed single-cell RNA sequencing with capture-based cell identification on autologous axicabtagene ciloleucel (axi-cel) anti-CD19 CAR T cell infusion products to identify transcriptomic features associated with efficacy and toxicity in 24 patients with LBCL. Patients who achieved a complete response by positron emission tomography/computed tomography at their 3-month follow-up had three-fold higher frequencies of CD8 T cells expressing memory signatures than patients with partial response or progressive disease. Molecular response measured by cell-free DNA sequencing at day 7 after infusion was significantly associated with clinical response (P = 0.008), and a signature of CD8 T cell exhaustion was associated (q = 2.8 × 10−149) with a poor molecular response. Furthermore, a rare cell population with monocyte-like transcriptional features was associated (P = 0.0002) with high-grade ICANS. Our results suggest that heterogeneity in the cellular and molecular features of CAR T cell infusion products contributes to variation in efficacy and toxicity after axi-cel therapy in LBCL, and that day 7 molecular response might serve as an early predictor of CAR T cell efficacy. Single-cell transcriptomics reveals that the heterogeneity of anti-CD19 CAR T cell infusion products contributes to variability in clinical response, early molecular response and development of immune effector cell-associated neurotoxicity syndrome in patients with large B cell lymphomas.

Journal ArticleDOI
TL;DR: This study took an immunoinformatics approach to identify significant cytotoxic T lymphocyte (CTL) and B cell epitopes in the 2019‐nCoV surface glycoprotein, indicating their potential in generating immune responses.
Abstract: The 2019 novel coronavirus (2019-nCoV) outbreak has caused a large number of deaths with thousands of confirmed cases worldwide, especially in East Asia. This study took an immunoinformatics approach to identify significant cytotoxic T lymphocyte (CTL) and B cell epitopes in the 2019-nCoV surface glycoprotein. Also, interactions between identified CTL epitopes and their corresponding major histocompatibility complex (MHC) class I supertype representatives prevalent in China were studied by molecular dynamics simulations. We identified five CTL epitopes, three sequential B cell epitopes and five discontinuous B cell epitopes in the viral surface glycoprotein. Also, during simulations, the CTL epitopes were observed to be binding MHC class I peptide-binding grooves via multiple contacts, with continuous hydrogen bonds and salt bridge anchors, indicating their potential in generating immune responses. Some of these identified epitopes can be potential candidates for the development of 2019-nCoV vaccines.

Journal ArticleDOI
TL;DR: The ability of ionizable LNPs to deliver mRNA to primary human T cells for functional protein expression is demonstrated and the potential of LNPS to enhance mRNA-based CAR T cell engineering methods is indicated.
Abstract: Chimeric antigen receptor (CAR) T cell therapy relies on the ex vivo manipulation of patient T cells to create potent, cancer-targeting therapies, shown to be capable of inducing remission in patients with acute lymphoblastic leukemia and large B cell lymphoma. However, current CAR T cell engineering methods use viral delivery vectors, which induce permanent CAR expression and could lead to severe adverse effects. Messenger RNA (mRNA) has been explored as a promising strategy for inducing transient CAR expression in T cells to mitigate the adverse effects associated with viral vectors, but it most commonly requires electroporation for T cell mRNA delivery, which can be cytotoxic. Here, ionizable lipid nanoparticles (LNPs) were designed for ex vivo mRNA delivery to human T cells. A library of 24 ionizable lipids was synthesized, formulated into LNPs, and screened for luciferase mRNA delivery to Jurkat cells, revealing seven formulations capable of enhanced mRNA delivery over lipofectamine. The top-performing LNP formulation, C14-4, was selected for CAR mRNA delivery to primary human T cells. This platform induced CAR expression at levels equivalent to electroporation, with substantially reduced cytotoxicity. CAR T cells engineered via C14-4 LNP treatment were then compared to electroporated CAR T cells in a coculture assay with Nalm-6 acute lymphoblastic leukemia cells, and both CAR T cell engineering methods elicited potent cancer-killing activity. These results demonstrate the ability of LNPs to deliver mRNA to primary human T cells to induce functional protein expression, and indicate the potential of LNPs to enhance mRNA-based CAR T cell engineering methods.

Journal ArticleDOI
TL;DR: The remission induction rate supports further development of CD22 CAR T cells as a therapeutic option in patients resistant to CD19-targeted immunotherapy, and novel information on the impact of manufacturing changes on clinical outcomes is provided.
Abstract: PURPOSEPatients with B-cell acute lymphoblastic leukemia who experience relapse after or are resistant to CD19-targeted immunotherapies have limited treatment options. Targeting CD22, an alternativ...

Journal ArticleDOI
TL;DR: A critical and dynamic role of PD-L1 on dendritic cells is identified, which needs to be harnessed for better invigoration of antitumor immune responses.
Abstract: Immune checkpoint blockade therapies have shown clinical promise in a variety of cancers, but how tumor-infiltrating T cells are activated remains unclear. In this study, we explore the functions of PD-L1 on dendritic cells (DCs), which highly express PD-L1. We observe that PD-L1 on DC plays a critical role in limiting T cell responses. Type 1 conventional DCs are essential for PD-L1 blockade and they upregulate PD-L1 upon antigen uptake. Upregulation of PD-L1 on DC is mediated by type II interferon. While DCs are the major antigen presenting cells for cross-presenting tumor antigens to T cells, subsequent PD-L1 upregulation protects them from killing by cytotoxic T lymphocytes, yet dampens the antitumor responses. Blocking PD-L1 in established tumors promotes re-activation of tumor-infiltrating T cells for tumor control. Our study identifies a critical and dynamic role of PD-L1 on DC, which needs to be harnessed for better invigoration of antitumor immune responses.

Journal ArticleDOI
TL;DR: A single-cell characterization of cerebrospinal fluid and blood of newly diagnosed multiple sclerosis patients is provided, revealing altered composition of lymphocyte and monocyte subsets, validated by other methods including the interrogation of the TFH subset in mouse models of MS.
Abstract: Cerebrospinal fluid (CSF) protects the central nervous system (CNS) and analyzing CSF aids the diagnosis of CNS diseases, but our understanding of CSF leukocytes remains superficial. Here, using single cell transcriptomics, we identify a specific location-associated composition and transcriptome of CSF leukocytes. Multiple sclerosis (MS) - an autoimmune disease of the CNS - increases transcriptional diversity in blood, but increases cell type diversity in CSF including a higher abundance of cytotoxic phenotype T helper cells. An analytical approach, named cell set enrichment analysis (CSEA) identifies a cluster-independent increase of follicular (TFH) cells potentially driving the known expansion of B lineage cells in the CSF in MS. In mice, TFH cells accordingly promote B cell infiltration into the CNS and the severity of MS animal models. Immune mechanisms in MS are thus highly compartmentalized and indicate ongoing local T/B cell interaction.

Journal ArticleDOI
TL;DR: It has been revealed that cytotoxic CD8+ T cells exhibit functional exhaustion patterns, such as the expression of NKG2A, PD-1, and TIM-3, and IgM and IgG antibodies show similar dynamics in COVID-19 disease.
Abstract: A close interaction between the virus SARS-CoV-2 and the immune system of an individual results in a diverse clinical manifestation of the COVID-19 disease. While adaptive immune responses are essential for SARS-CoV-2 virus clearance, the innate immune cells, such as macrophages, may contribute, in some cases, to the disease progression. Macrophages have shown a significant production of IL-6, suggesting they may contribute to the excessive inflammation in COVID-19 disease. Macrophage Activation Syndrome may further explain the high serum levels of CRP, which are normally lacking in viral infections. In adaptive immune responses, it has been revealed that cytotoxic CD8+ T cells exhibit functional exhaustion patterns, such as the expression of NKG2A, PD-1, and TIM-3. Since SARS-CoV-2 restrains antigen presentation by downregulating MHC class I and II molecules and, therefore, inhibits the T cell-mediated immune responses, humoral immune responses also play a substantial role. Specific IgA response appears to be stronger and more persistent than the IgM response. Moreover, IgM and IgG antibodies show similar dynamics in COVID-19 disease.

Posted ContentDOI
29 Jun 2020-bioRxiv
TL;DR: The collective dataset shows that SARS-CoV-2 elicits robust memory T cell responses akin to those observed in the context of successful vaccines, suggesting that natural exposure or infection may prevent recurrent episodes of severe COVID-19 also in seronegative individuals.
Abstract: SARS-CoV-2-specific memory T cells will likely prove critical for long-term immune protection against COVID-19 We systematically mapped the functional and phenotypic landscape of SARS-CoV-2-specific T cell responses in a large cohort of unexposed individuals as well as exposed family members and individuals with acute or convalescent COVID-19 Acute phase SARS-CoV-2-specific T cells displayed a highly activated cytotoxic phenotype that correlated with various clinical markers of disease severity, whereas convalescent phase SARS-CoV-2-specific T cells were polyfunctional and displayed a stem-like memory phenotype Importantly, SARS-CoV-2-specific T cells were detectable in antibody-seronegative family members and individuals with a history of asymptomatic or mild COVID-19 Our collective dataset shows that SARS-CoV-2 elicits robust memory T cell responses akin to those observed in the context of successful vaccines, suggesting that natural exposure or infection may prevent recurrent episodes of severe COVID-19 also in seronegative individuals


Journal ArticleDOI
TL;DR: Recent advances supporting the direct role ofNK cells in controlling expansion of solid tumors and their prognostic value in human cancers are outlined and current strategies to augment the antitumor function of NK cells for the treatment ofSolid tumors are evaluated.
Abstract: Natural killer (NK) cells are a population of innate lymphoid cells playing a pivotal role in host immune responses against infection and tumor growth. These cells have a powerful cytotoxic activity orchestrated by an intricate network of inhibitory and activating signals. The importance of NK cells in controlling tumor growth and in mediating a robust anti-metastatic effect has been demonstrated in different experimental mouse cancer models. Consistently, high density of tumor-infiltrating NK cells has been linked with a good prognosis in multiple human solid tumors. However, there are also tumors that appear to be refractory to NK cell-mediated killing for the presence of an immunosuppressive microenvironment affecting NK cell function. Immunotherapeutic strategies aimed at restoring and increasing the cytotoxic activity of NK cells in solid tumors, including the adoptive transfer of NK and CAR-NK cells, are currently employed in preclinical and clinical studies. In this review, we outline recent advances supporting the direct role of NK cells in controlling expansion of solid tumors and their prognostic value in human cancers. We summarize the mechanisms adopted by cancer cells and the tumor microenvironment to affect NK cell function, and finally we evaluate current strategies to augment the antitumor function of NK cells for the treatment of solid tumors.

Journal ArticleDOI
TL;DR: It is demonstrated that host responses to SARS-CoV-2 are dependent on viral load and infection time course, with observed differences due to age and sex that may contribute to disease severity.
Abstract: Despite limited genomic diversity, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown a wide range of clinical manifestations in different patient populations. The mechanisms behind these host differences are still unclear. Here, we examined host response gene expression across infection status, viral load, age, and sex among shotgun RNA sequencing profiles of nasopharyngeal (NP) swabs from 430 individuals with PCR-confirmed SARS-CoV-2 and 54 negative controls. SARS-CoV-2 induced a strong antiviral response with up-regulation of antiviral factors such as OAS1-3 and IFIT1-3 and T helper type 1 (Th1) chemokines CXCL9/10/11, as well as a reduction in transcription of ribosomal proteins. SARS-CoV-2 culture in human airway epithelial (HAE) cultures replicated the in vivo antiviral host response 7 days post infection, with no induction of interferon-stimulated genes after 3 days. Patient-matched longitudinal specimens (mean elapsed time = 6.3 days) demonstrated reduction in interferon-induced transcription, recovery of transcription of ribosomal proteins, and initiation of wound healing and humoral immune responses. Expression of interferon-responsive genes, including ACE2, increased as a function of viral load, while transcripts for B cell–specific proteins and neutrophil chemokines were elevated in patients with lower viral load. Older individuals had reduced expression of the Th1 chemokines CXCL9/10/11 and their cognate receptor CXCR3, as well as CD8A and granzyme B, suggesting deficiencies in trafficking and/or function of cytotoxic T cells and natural killer (NK) cells. Relative to females, males had reduced B cell–specific and NK cell–specific transcripts and an increase in inhibitors of nuclear factor kappa-B (NF-κB) signaling, possibly inappropriately throttling antiviral responses. Collectively, our data demonstrate that host responses to SARS-CoV-2 are dependent on viral load and infection time course, with observed differences due to age and sex that may contribute to disease severity.