scispace - formally typeset
Search or ask a question
Topic

Cytotoxic T cell

About: Cytotoxic T cell is a research topic. Over the lifetime, 92492 publications have been published within this topic receiving 4768477 citations. The topic is also known as: killer T cell & cytotoxic T lymphocyte.


Papers
More filters
Journal ArticleDOI
01 Jan 2008-ACS Nano
TL;DR: The results of this study demonstrate the importance of cell-specific uptake mechanisms and pathways that could lead to sensitivity or resistance to cationic particle toxicity.
Abstract: The exponential increase in the number of new nanomaterials that are being produced increases the likelihood of adverse biological effects in humans and the environment. In this study we compared the effects of cationic nanoparticles in five different cell lines that represent portal-of-entry or systemic cellular targets for engineered nanoparticles. Although 60 nm NH2-labeled polystyrene (PS) nanospheres were highly toxic in macrophage (RAW 264.7) and epithelial (BEAS-2B) cells, human microvascular endothelial (HMEC), hepatoma (HEPA-1), and pheochromocytoma (PC-12) cells were relatively resistant to particle injury. While the death pathway in RAW 264.7 cells involves caspase activation, the cytotoxic response in BEAS-2B cells is more necrotic in nature. Using fluorescent-labeled NH2-PS, we followed the routes of particle uptake. Confocal microscopy showed that the cationic particles entered a LAMP-1 positive lysosomal compartment in RAW 264.7 cells from where the particles could escape by lysosomal ruptu...

598 citations

Journal ArticleDOI
TL;DR: It is suggested that, as with antigen presentation by MHC class II molecules, presentation by HSPs is also carried out primarily by the host antigen-presenting cells, and this mechanism explains the phenomenon of cross-priming.
Abstract: Recently emerging evidence indicates that the heat shock proteins (HSPs) gp96, hsp90, and hsp70 associate with antigenic peptides derived from cellular proteins. This evidence forms the basis of the following two hypotheses: 1) that HSPs constitute a relay line in which the peptides, after generation in the cytosol by the action of proteases, are transferred from one HSP to another, until they are finally accepted by MHC class I molecules in the endoplasmic reticulum, and 2) that the binding of peptides by HSPs constitutes a key step in the priming of cytotoxic T lymphocytes (CTLs) in vivo. The following chain of events is suggested: HSPs are released from virus-infected cells or tumor cells in vivo during lysis of cells during infection or by the action of antibodies or nonspecific effectors. The HSPs, which are now complexed with antigenic peptides derived from the cognate cells, are taken up by macrophage or other specialized antigen-presenting cells, possibly by a receptor-mediated mechanism. The HSP-borne peptide is then routed to the endogenous presentation pathway in the antigen-presenting cell and is displayed in the context of that cell's MHC class I, where it is finally recognized by the precursor CTLs. Thus it is suggested that, as with antigen presentation by MHC class II molecules, presentation by MHC class I molecules is also carried out primarily by the host antigen-presenting cells. This mechanism explains the phenomenon of cross-priming and has implications for the development of immunological strategies against cancer and infectious diseases.

597 citations

Journal ArticleDOI
TL;DR: Modulation of an immune response from one dominated by excessive activity of Th1-like T cells to onedominated by the protective cytokines produced by Th2- like T cells may have applicability to the therapy of certain human autoimmune diseases.
Abstract: The properties and outcome of an immune response are best predicted by the lymphokine phenotype of the responding T cells. Cytokines produced by CD4+ T helper type 1 (Th1) T cells mediate delayed type hypersensitivity (DTH) and inflammatory responses, whereas cytokines produced by Th2 T cells mediate helper T cell functions for antibody production. To determine whether induction of Th2-like cells would modulate an inflammatory response, interleukin 4 (IL-4) was administered to animals with experimental allergic encephalomyelitis (EAE), a prototypic autoimmune disease produced by Th1-like T cells specific for myelin basic protein (MBP). IL-4 treatment resulted in amelioration of clinical disease, the induction of MBP-specific Th2 cells, diminished demyelination, and inhibition of the synthesis of inflammatory cytokines in the central nervous system (CNS). Modulation of an immune response from one dominated by excessive activity of Th1-like T cells to one dominated by the protective cytokines produced by Th2-like T cells may have applicability to the therapy of certain human autoimmune diseases.

597 citations

Journal ArticleDOI
TL;DR: It is demonstrated that vaccination with irradiated autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor stimulates potent antitumor immunity in humans with metastatic melanoma.
Abstract: We conducted a Phase I clinical trial investigating the biologic activity of vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte–macrophage colony-stimulating factor in patients with metastatic melanoma. Immunization sites were intensely infiltrated with T lymphocytes, dendritic cells, macrophages, and eosinophils in all 21 evaluable patients. Although metastatic lesions resected before vaccination were minimally infiltrated with cells of the immune system in all patients, metastatic lesions resected after vaccination were densely infiltrated with T lymphocytes and plasma cells and showed extensive tumor destruction (at least 80%), fibrosis, and edema in 11 of 16 patients examined. Antimelanoma cytotoxic T cell and antibody responses were associated with tumor destruction. These results demonstrate that vaccination with irradiated autologous melanoma cells engineered to secrete granulocyte–macrophage colony-stimulating factor stimulates potent antitumor immunity in humans with metastatic melanoma.

596 citations

Journal ArticleDOI
01 Jan 1993-Glia
TL;DR: Microglia express many leukocyte surface antigens which are upregulated in such chronic degenerative neurological diseases as Alzheimer's disease and amyotrophic lateral sclerosis, and proteins designed to defend against bystander lysis caused by the membrane attack complex are associated with damaged neuronal processes in AD.
Abstract: Microglia express many leukocyte surface antigens which are upregulated in such chronic degenerative neurological diseases as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). These surface antigens include leukocyte common antigen, immunoglobulin Fc receptors, MHC class I and class II glycoproteins, β2-integrins, and the vitronectin receptor. Ligands for these receptors are also found. They include immunoglobulins, complement proteins of the classical pathway, T lymphocytes of the cytotoxic/suppressor and helper/inducer classes, and vitronectin. T lymphocytes marginate along capillary venules, with some penetrating into the tissue matrix. Immunoglobulins and complement proteins are synthesized locally in brain, although they may also come from the bloodstream if the blood-brain barrier is compromised. The membrane attack complex, which is formed from C5b-9, the terminal components of complement, has been identified in AD and multiple sclerosis brain tissue. In addition, proteins designed to defend against bystander lysis caused by the membrane attack complex, including protectin, C8 binding protein, clusterin, and vitronectin, are associated with damaged neuronal processes in AD. Autodestruction may play a prominent part in these 2 diseases.

596 citations


Network Information
Related Topics (5)
T cell
109.5K papers, 5.5M citations
94% related
Immune system
182.8K papers, 7.9M citations
93% related
Cytokine
79.2K papers, 4.4M citations
93% related
Cell culture
133.3K papers, 5.3M citations
92% related
Antigen
170.2K papers, 6.9M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20251
20241
20234,029
20224,295
20212,914
20202,932