scispace - formally typeset
Search or ask a question
Topic

Dalfopristin

About: Dalfopristin is a research topic. Over the lifetime, 696 publications have been published within this topic receiving 26621 citations. The topic is also known as: RP-54476 & Dalfopristina.


Papers
More filters
Journal ArticleDOI
TL;DR: Lsa appears to be an intrinsic gene of E. faecalis that explains the characteristic resistance of this species to CLI and Q-D, and the presence of Walker A and B ATP-binding motifs suggest that this resistance may be related to efflux of these antibiotics.
Abstract: Enterococcus faecalis isolates are resistant to clindamycin (CLI) and quinupristin-dalfopristin (Q-D), and this is thought to be a species characteristic. Disruption of a gene ( abc-23 , now designated lsa , for “lincosamide and streptogramin A resistance”) of E. faecalis was associated with a ≥40-fold decrease in MICs of Q-D (to 0.75 μg/ml), CLI (to 0.12 to 0.5 μg/ml), and dalfopristin (DAL) (to 4 to 8 μg/ml) for the wild-type E. faecalis parental strain (Q-D MIC, 32 μg/ml; CLI MIC, 32 to 48 μg/ml; DAL MIC, 512 μg/ml). Complementation of the disruption mutant with lsa on a shuttle plasmid resulted in restoration of the MICs of CLI, Q-D, and DAL to wild-type levels. Under high-stringency conditions, lsa was found in 180 of 180 isolates of E. faecalis but in none of 189 other enterococci. Among 19 erm (B)-lacking Enterococcus faecium strains, 9 (47%) were highly susceptible to CLI (MIC, 0.06 to 0.25 μg/ml) and had DAL MICs of 4 to 16 μg/ml; for the remaining erm (B)-lacking E. faecium strains, the CLI and DAL MICs were 4 to >256 and 2 to >128 μg/ml, respectively. In contrast, none of 32 erm (B)-lacking E. faecalis strains were susceptible (CLI MIC range, 16 to 32 μg/ml; DAL MIC range, ≥32 μg/ml). When lsa was introduced into an E. faecium strain initially susceptible to CLI, the MICs of CLI and DAL increased ≥60-fold and that of Q-D increased 6-fold (to 3 to 6 μg/ml). Introduction of lsa into two DAL-resistant (MICs, >128 μg/ml), Q-D-susceptible (MICs, 0.5 and 1.5 μg/ml) E. faecium strains (CLI MICs, 12 and >256 μg/ml) resulted in an increase in the Q-D MICs from 3- to 10-fold (to 8 and >32 μg/ml), respectively. Although efflux was not studied, the similarity (41 to 64%) of the predicted Lsa protein to ABC proteins such as Vga(A), Vga(B), and Msr(A) of Staphylococcus aureus and YjcA of Lactococcus lactis and the presence of Walker A and B ATP-binding motifs suggest that this resistance may be related to efflux of these antibiotics. In conclusion, lsa appears to be an intrinsic gene of E. faecalis that explains the characteristic resistance of this species to CLI and Q-D.

227 citations

Journal ArticleDOI
TL;DR: In this article, the SENTRY Antimicrobial surveillance program (SENTRY, 1998) collected 50 consecutive UTI pathogens from patients hospitalized in 31 medical centers (26 in the United States and five in Canada) and forwarded subcultures to the coordinating center.

221 citations

Journal ArticleDOI
TL;DR: Staphylococcus aureus strain HMC3, was resistant to vancomycin (VRSA) through the presence of the vanA resistance gene; it also contained mecA, erm(A), erM(B), tet(K) and aac(6')-aph(2), conferring resistance to licensed beta-lactams, macrolides, tetracycline and aminoglycosides.
Abstract: Staphylococcus aureus strain HMC3 isolated at the Hershey Medical Center, was resistant to vancomycin (VRSA) through the presence of the vanA resistance gene; it also contained mecA, erm(A), erm(B), tet(K) and aac(6')-aph(2"), conferring resistance to licensed β-lactams, macrolides, tetracycline and aminoglycosides. HMC3 also had alterations in GyrA and GrlB and was resistant to available quinolones. Experimental drugs with low MICs (<2 mg/L) for VRSA HMC3 included cephalosporins BAL9141 and RWJ-54428; glycopeptides oritavancin and dalbavancin; the lipopeptide daptomycin; the glycolipodepsipeptide ramoplanin; new fluoroquinolones WCK 771 A, WCK 1153, DK-507k and sitafloxacin; and the DNA nanobinder GS02-02. These agents were all bactericidal as were trimethoprim/sulfamethoxazole and teicoplanin (MIC 4 mg/L). Oxa- zolidinones linezolid and ranbezolid; the injectable streptogramin quinupristin/dalfopristin; DNA nanobinders GS2-10547 and GS02-104; peptide deformylase inhibitors NVP-PDF713 and GS02-12; tetracycline derivative tigecycline; the antifolate iclaprim; mupirocin and fusidic acid were all active in vitro but bacteriostatic.

213 citations

Journal ArticleDOI
TL;DR: Although control of VRE is challenging, a laissez-faire policy would result in an increased number of infections and would create an irreversible situation, and dissemination of glycopeptide-resistant Staphylococcus aureus with van genes acquired from resistant enterococci cannot be ruled out.
Abstract: Twenty-five years ago, isolation of vancomycin-resistant Enterococcus faecium (VREm) was reported both in the UK and in France. Since then, VREm has spread worldwide in hospitals. Hospital outbreaks appeared to be related to the evolution since the end of 1980s of a subpopulation of E. faecium highly resistant to ampicillin and fluoroquinolones (the so-called clonal complex CC17) that later acquired resistance to vancomycin. CC17 isolates are presumably better adapted than other E. faecium isolates to the constraints of the hospital environment and most contain mobile genetic elements, phage genes, genes encoding membrane proteins, regulatory genes, a putative pathogenicity island and megaplasmids. Colonization and persistence are major features of VREm. Inherent characteristics of E. faecium including a remarkable genome plasticity, in part due to acquisition of IS elements, in particular IS16, have facilitated niche adaptation of this distinct E. faecium subpopulation that is multiply resistant to antibiotics. Quinupristin/dalfopristin and linezolid are licensed for the treatment of VREm infections, with linezolid often used as a first-line treatment. However, the emergence of plasmid-mediated resistance to linezolid by production of a Cfr methyltransferase in Enterococcus faecalis is worrying. Daptomycin has not been extensively evaluated for the treatment of VREm infections and resistant mutants have been selected under daptomycin therapy. Although control of VRE is challenging, a laissez-faire policy would result in an increased number of infections and would create an irreversible situation. Although so far unsuccessful, dissemination of glycopeptide-resistant Staphylococcus aureus with van genes acquired from resistant enterococci cannot be ruled out.

212 citations

Journal ArticleDOI
01 Jan 2006-Drugs
TL;DR: Treatment of infections associated with orthopaedic devices usually requires appropriate surgical intervention combined with prolonged antimicrobial therapy, and the choice of the antimicrobial regimen depends on the duration and pathogenesis of infection, stability of the implant, antimicrobial susceptibility of the pathogen and condition of the surrounding soft tissue.
Abstract: The pathogenesis of implant-associated infection involves interaction between the microorganisms (biofilm formation), the implant and the host. Despite improvement of perioperative prophylaxis, orthopaedic implants still remain highly susceptible to bacterial or fungal contamination, generally resulting in persistent implant-associated infection. Therefore, perioperative and life-long prevention of infection is important. For perioperative prophylaxis, a first- or second-generation cephalosporin is recommended, which should be administered between 60 and 30 minutes before incision. The duration of prophylaxis should not exceed 1 day. In centres with a low incidence of infection, a single dose is sufficient. Treatment of infections associated with orthopaedic devices usually requires appropriate surgical intervention combined with prolonged antimicrobial therapy. The choice of the antimicrobial regimen depends on the duration and pathogenesis of infection, stability of the implant, antimicrobial susceptibility of the pathogen and condition of the surrounding soft tissue. The role of rifampicin (rifampin), which has excellent activity on adherent staphylococci, in combination with β-lactams, glycopeptides, fluoroquinolones, minocycline, cotrimoxazole or fusidic acid, in the treatment of staphylococcal infections is outlined. Increasing antimicrobial resistance requires the use of alternative agents, such as quinupristin/dalfopristin, linezolid and daptomycin, but results of clinical trials with these agents are limited. Also reviewed are potential new antimicrobial agents currently undergoing investigation, such as the novel oxazolidinone RWJ-416457, the new glycopeptide dalbavancin, the glycylcycline compound tigecycline, the new carbacephem BP-102 and novel rifamycin derivatives. Vaccination against Staphylococcus aureus with StaphVAX® induced specific antibodies potentially preventing bacteraemia; however, there are no studies on efficacy in the prophylaxis of device-associated infections with this vaccine.

208 citations


Network Information
Related Topics (5)
Antibacterial agent
35.8K papers, 1.2M citations
82% related
Antibiotic resistance
29.1K papers, 884.5K citations
82% related
Staphylococcus aureus
27K papers, 779K citations
81% related
Pseudomonas aeruginosa
16.8K papers, 565.2K citations
81% related
Drug resistance
28.4K papers, 1.1M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237
202217
20219
202010
201913
201811