scispace - formally typeset
Search or ask a question
Topic

Data aggregator

About: Data aggregator is a research topic. Over the lifetime, 2615 publications have been published within this topic receiving 40265 citations.


Papers
More filters
Proceedings ArticleDOI
18 Nov 2008
TL;DR: DADPP (Data Aggregation Different Privacy-Levels Protection) offers different levels of data aggregation privacy based on different node-numbers for pretreating data to ensure expected privacy level.
Abstract: As broad deployed of wireless sensor networks, privacy concerns have emerged as the main obstacle to success. When wireless sensor networks are used in everyday life, the privacy about monitored object' sensitive data becomes an important issue. Consequently, providing efficient data aggregation privacy protection is desirable. However, the existing technique is always energy exhausting, and does not consider different privacy levels of data aggregation. In this paper, DADPP (Data Aggregation Different Privacy-Levels Protection) is proposed to deal with data aggregation privacy protection. DADPP offers different levels of data aggregation privacy based on different node-numbers for pretreating data. According to desired privacy level, all nodes within the same cluster are partitioned into many groups, any group including node- numbers belong to the same privacy level. Data are pretreated only in the same group. Compared with the existing technique, DADPP has lower energy costs while ensuring expected privacy level.

13 citations

Journal ArticleDOI
TL;DR: Theoretical analysis and experimental results showed that in WSN, the proposed Bayes Node Energy Polynomial Distribution (BNEPD) technique reduced Energy Drain Rate (EDR) by 39% and reduced 33% of Communication Overhead (CO) using poly distribution algorithm, and the proposed MSDSS framework increased the Network Lifetime (NL) by 15%.
Abstract: Wireless Sensor Networks (WSNs) are spatially distributed to independent sensor networks that can sense physical characteristics such as temperature, sound, pressure, energy, and so on. WSNs have secure link to physical environment and robustness. Data Aggregation (DA) plays a key role in WSN, and it helps to minimize the Energy Consumption (EC). In order to have trustworthy DA with a rate of high aggregation for WSNs, the existing research works have focused on Data Routing for In-Network Aggregation (DRINA). Yet, there is no accomplishment of an effective balance between overhead and routing. But EC required during DA remained unsolved. The detection of objects belonging to the same event into specific regions by the Bayes Node is distributed through the Sensor Nodes (SNs). Multi-Sensor Data Synchronization Scheduling (MSDSS) framework is proposed for efficient DA at the sink in a heterogeneous sensor network. Secure and Energy-Efficient based In-Network Aggregation Sensor Data Routing (SEE-INASDR) is developed based on the Dynamic Routing (DR) structure with reliable data transmission in WSNs. Theoretical analysis and experimental results showed that in WSN, the proposed Bayes Node Energy Polynomial Distribution (BNEPD) technique reduced Energy Drain Rate (EDR) by 39% and reduced 33% of Communication Overhead (CO) using poly distribution algorithm. Similarly, the proposed MSDSS framework increased the Network Lifetime (NL) by 15%. This framework also increased 10.5% of Data Aggregation Routing (DAR). Finally, the SEE-INASDR framework significantly reduced EC by 51% using a Secure and Energy-Efficient Routing Protocol (SEERP).

13 citations

Book ChapterDOI
10 Oct 2011
TL;DR: This paper proposes a novel conflict-aware data fusion strategy for historical data sources that significantly reduces data aggregation error in the integrated historical database.
Abstract: Historical data reports on numerous events for overlapping time intervals, locations, and names. As a result, it may include severe data conflicts caused by database redundancy that prevent researchers from obtaining the correct answers to queries on an integrated historical database. In this paper, we propose a novel conflict-aware data fusion strategy for historical data sources. We evaluated our approach on a large-scale data warehouse that integrates historical data from approximately 50,000 reports on US epidemiological data for more than 100 years. We demonstrate that our approach significantly reduces data aggregation error in the integrated historical database.

13 citations

Journal ArticleDOI
04 Mar 2009-Sensors
TL;DR: This paper is the first to consider the energy consumption tradeoffs between data aggregation and retransmission in a wireless sensor network and proposes a novel non-linear mathematical formulation, whose function is to minimize the total energy consumption of data transmission subject to data aggregation trees and data retransmissions.
Abstract: Embedding data-aggregation capabilities into sensor nodes of wireless networks could save energy by reducing redundant data flow transmissions. Existing research describes the construction of data aggregation trees to maximize data aggregation times in order to reduce data transmission of redundant data. However, aggregation of more nodes on the same node will incur significant collisions. These MAC (Media Access Control) layer collisions introduce additional data retransmissions that could jeopardize the advantages of data aggregation. This paper is the first to consider the energy consumption tradeoffs between data aggregation and retransmissions in a wireless sensor network. By using the existing CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) MAC protocol, the retransmission energy consumption function is well formulated. This paper proposes a novel non-linear mathematical formulation, whose function is to minimize the total energy consumption of data transmission subject to data aggregation trees and data retransmissions. This solution approach is based on Lagrangean relaxation, in conjunction with optimization-based heuristics. From the computational experiments, it is shown that the proposed algorithms could construct MAC aware data aggregation trees that are up to 59% more energy efficient than existing data aggregation algorithms.

13 citations

Journal ArticleDOI
10 Nov 2014-Sensors
TL;DR: This paper focuses on the SUM aggregation function and proposes two privacy-preserving data aggregation protocols for two-tiered sensor networks with mobile nodes: PDAAS and PDACAS, which can protect the privacy of sensor nodes even the aggregator and the sink collude, at the cost of a little more overhead.
Abstract: Privacy-preserving data aggregation in wireless sensor networks (WSNs) with mobile nodes is a challenging problem, as an accurate aggregation result should be derived in a privacy-preserving manner, under the condition that nodes are mobile and have no pre-specified keys for cryptographic operations. In this paper, we focus on the SUM aggregation function and propose two privacy-preserving data aggregation protocols for two-tiered sensor networks with mobile nodes: Privacy-preserving Data Aggregation against non-colluded Aggregator and Sink (PDAAS) and Privacy-preserving Data Aggregation against Colluded Aggregator and Sink (PDACAS). Both protocols guarantee that the sink can derive the SUM of all raw sensor data but each sensor's raw data is kept confidential. In PDAAS, two keyed values are used, one shared with the sink and the other shared with the aggregator. PDAAS can protect the privacy of sensed data against external eavesdroppers, compromised sensor nodes, the aggregator or the sink, but fails if the aggregator and the sink collude. In PDACAS, multiple keyed values are used in data perturbation, which are not shared with the aggregator or the sink. PDACAS can protect the privacy of sensor nodes even the aggregator and the sink collude, at the cost of a little more overhead than PDAAS. Thorough analysis and experiments are conducted, which confirm the efficacy and efficiency of both schemes.

13 citations


Network Information
Related Topics (5)
Wireless sensor network
142K papers, 2.4M citations
92% related
Wireless network
122.5K papers, 2.1M citations
91% related
Network packet
159.7K papers, 2.2M citations
89% related
Wireless
133.4K papers, 1.9M citations
89% related
Node (networking)
158.3K papers, 1.7M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023104
2022277
2021189
2020207
2019179
2018188