scispace - formally typeset
Search or ask a question
Topic

Data aggregator

About: Data aggregator is a research topic. Over the lifetime, 2615 publications have been published within this topic receiving 40265 citations.


Papers
More filters
Book ChapterDOI
14 Mar 2004
TL;DR: A new algorithm is introduced, based on potential gains, which adaptively redistributes the error thresholds to those nodes that benefit the most and tries to minimize the total number of transmitted messages in the network.
Abstract: Earlier work has demonstrated the effectiveness of in-network data aggregation in order to minimize the amount of messages exchanged during continuous queries in large sensor networks. The key idea is to build an aggregation tree, in which parent nodes aggregate the values received from their children. Nevertheless, for large sensor networks with severe energy constraints the reduction obtained through the aggregation tree might not be sufficient. In this paper we extend prior work on in-network data aggregation to support approximate evaluation of queries to further reduce the number of exchanged messages among the nodes and extend the longevity of the network. A key ingredient to our framework is the notion of the residual mode of operation that is used to eliminate messages from sibling nodes when their cumulative change is small. We introduce a new algorithm, based on potential gains, which adaptively redistributes the error thresholds to those nodes that benefit the most and tries to minimize the total number of transmitted messages in the network. Our experiments demonstrate that our techniques significantly outperform previous approaches and reduce the network traffic by exploiting the super-imposed tree hierarchy.

162 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a survey of distributed data aggregation algorithms, providing three main contributions: the concept of aggregation, characterizing the different types of aggregation functions, organizing the main aggregation techniques, and summarizing their principal characteristics.
Abstract: Distributed data aggregation is an important task, allowing the decentralized determination of meaningful global properties, which can then be used to direct the execution of other applications. The resulting values are derived by the distributed computation of functions like Count , Sum , and Average . Some application examples deal with the determination of the network size, total storage capacity, average load, majorities and many others. In the last decade, many different approaches have been proposed, with different trade-offs in terms of accuracy, reliability, message and time complexity. Due to the considerable amount and variety of aggregation algorithms, it can be difficult and time consuming to determine which techniques will be more appropriate to use in specific settings, justifying the existence of a survey to aid in this task. This work reviews the state of the art on distributed data aggregation algorithms, providing three main contributions. First, it formally defines the concept of aggregation, characterizing the different types of aggregation functions. Second, it succinctly describes the main aggregation techniques, organizing them in a taxonomy. Finally, it provides some guidelines toward the selection and use of the most relevant techniques, summarizing their principal characteristics.

156 citations

Journal ArticleDOI
TL;DR: This paper makes use of diffusion wavelets to find a sparse basis that characterizes the spatial (and temporal) correlations well on arbitrary WSNs, which enables straightforward CS-based data aggregation as well as high-fidelity data recovery at the sink.
Abstract: We focus on wireless sensor networks (WSNs) that perform data collection with the objective of obtaining the whole dataset at the sink (as opposed to a function of the dataset). In this case, energy-efficient data collection requires the use of data aggregation. Whereas many data aggregation schemes have been investigated, they either compromise the fidelity of the recovered data or require complicated in-network compressions. In this paper, we propose a novel data aggregation scheme that exploits compressed sensing (CS) to achieve both recovery fidelity and energy efficiency in WSNs with arbitrary topology. We make use of diffusion wavelets to find a sparse basis that characterizes the spatial (and temporal) correlations well on arbitrary WSNs, which enables straightforward CS-based data aggregation as well as high-fidelity data recovery at the sink. Based on this scheme, we investigate the minimum-energy compressed data aggregation problem. We first prove its NP-completeness, and then propose a mixed integer programming formulation along with a greedy heuristic to solve it. We evaluate our scheme by extensive simulations on both real datasets and synthetic datasets. We demonstrate that our compressed data aggregation scheme is capable of delivering data to the sink with high fidelity while achieving significant energy saving.

156 citations

Journal ArticleDOI
TL;DR: The proposed P2DA scheme against internal attackers using Boneh–Goh–Nissim public key cryptography is proposed, which is more computationally efficient and provably secure and can meet various security requirements.
Abstract: Privacy-preserving data aggregation (P2DA) is an important basic building block that can protect consumer’s privacy in the smart grid environment because it could be used to prevent the extraction of the electricity consumption information of a specific consumer. Due to this important function, the P2DA scheme for the smart grid has attracted a lot of attention from both academic and industry researchers who have proposed many P2DA schemes for the smart grid in recent years. However, most of these P2DA schemes are not secure against internal attackers or cannot provide data integrity. Besides, their computation costs are not satisfactory because the bilinear pairing operation or the hash-to-point operation is performed at the smart meter’s side. To address the deficiencies of previous schemes, we propose a new P2DA scheme against internal attackers using Boneh–Goh–Nissim public key cryptography. The proposed P2DA scheme does not use bilinear pairing or hash-to-point operation making it be more computationally efficient than previous P2DA schemes. We also show that the proposed P2DA scheme is provably secure and can meet various security requirements.

155 citations

Patent
22 Mar 2002
TL;DR: In this paper, a distributable software system for collecting and aggregating data from a network and for providing compartmentalized and optimized data summaries to third parties is described, which includes a data gathering layer for gathering the data; a data normalization layer for normalizing data types from multiple data sources; data cleansing layer for correcting data inconsistencies; data enrichment layer for rendering data analyzable; and an application interface layer for providing multiple interfaces to like multiple user applications.
Abstract: A distributable software system is disclosed for collecting and aggregating data from a network and for providing compartmentalized and optimized data summaries to third parties. The system includes a data gathering layer for gathering the data; a data normalization layer for normalizing data types from multiple data sources; a data cleansing layer for correcting data inconsistencies; a data enrichment layer for rendering data analyzable; and an application interface layer for providing multiple interfaces to like multiple user applications. An enterprise utilizes the system to provide data aggregation and summary services to clients. In preferred embodiments, intelligence created from the activity is harnessed to provide and improve services and to enhance profitability of the enterprise.

151 citations


Network Information
Related Topics (5)
Wireless sensor network
142K papers, 2.4M citations
92% related
Wireless network
122.5K papers, 2.1M citations
91% related
Network packet
159.7K papers, 2.2M citations
89% related
Wireless
133.4K papers, 1.9M citations
89% related
Node (networking)
158.3K papers, 1.7M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023104
2022277
2021189
2020207
2019179
2018188