scispace - formally typeset
Search or ask a question
Topic

Data publishing

About: Data publishing is a research topic. Over the lifetime, 1307 publications have been published within this topic receiving 40998 citations. The topic is also known as: data publishing & data release.


Papers
More filters
Journal ArticleDOI
TL;DR: The solution provided in this paper includes a formal protection model named k-anonymity and a set of accompanying policies for deployment and examines re-identification attacks that can be realized on releases that adhere to k- anonymity unless accompanying policies are respected.
Abstract: Consider a data holder, such as a hospital or a bank, that has a privately held collection of person-specific, field structured data. Suppose the data holder wants to share a version of the data with researchers. How can a data holder release a version of its private data with scientific guarantees that the individuals who are the subjects of the data cannot be re-identified while the data remain practically useful? The solution provided in this paper includes a formal protection model named k-anonymity and a set of accompanying policies for deployment. A release provides k-anonymity protection if the information for each person contained in the release cannot be distinguished from at least k-1 individuals whose information also appears in the release. This paper also examines re-identification attacks that can be realized on releases that adhere to k- anonymity unless accompanying policies are respected. The k-anonymity protection model is important because it forms the basis on which the real-world systems known as Datafly, µ-Argus and k-Similar provide guarantees of privacy protection.

7,925 citations

Journal ArticleDOI
TL;DR: This paper shows with two simple attacks that a \kappa-anonymized dataset has some subtle, but severe privacy problems, and proposes a novel and powerful privacy definition called \ell-diversity, which is practical and can be implemented efficiently.
Abstract: Publishing data about individuals without revealing sensitive information about them is an important problem. In recent years, a new definition of privacy called k-anonymity has gained popularity. In a k-anonymized dataset, each record is indistinguishable from at least k − 1 other records with respect to certain identifying attributes.In this article, we show using two simple attacks that a k-anonymized dataset has some subtle but severe privacy problems. First, an attacker can discover the values of sensitive attributes when there is little diversity in those sensitive attributes. This is a known problem. Second, attackers often have background knowledge, and we show that k-anonymity does not guarantee privacy against attackers using background knowledge. We give a detailed analysis of these two attacks, and we propose a novel and powerful privacy criterion called e-diversity that can defend against such attacks. In addition to building a formal foundation for e-diversity, we show in an experimental evaluation that e-diversity is practical and can be implemented efficiently.

3,780 citations

Proceedings ArticleDOI
03 Apr 2006
TL;DR: This paper shows with two simple attacks that a \kappa-anonymized dataset has some subtle, but severe privacy problems, and proposes a novel and powerful privacy definition called \ell-diversity, which is practical and can be implemented efficiently.
Abstract: Publishing data about individuals without revealing sensitive information about them is an important problem. In recent years, a new definition of privacy called \kappa-anonymity has gained popularity. In a \kappa-anonymized dataset, each record is indistinguishable from at least k—1 other records with respect to certain "identifying" attributes. In this paper we show with two simple attacks that a \kappa-anonymized dataset has some subtle, but severe privacy problems. First, we show that an attacker can discover the values of sensitive attributes when there is little diversity in those sensitive attributes. Second, attackers often have background knowledge, and we show that \kappa-anonymity does not guarantee privacy against attackers using background knowledge. We give a detailed analysis of these two attacks and we propose a novel and powerful privacy definition called \ell-diversity. In addition to building a formal foundation for \ell-diversity, we show in an experimental evaluation that \ell-diversity is practical and can be implemented efficiently.

2,700 citations

Journal ArticleDOI
TL;DR: This paper addresses the problem of releasing microdata while safeguarding the anonymity of respondents to which the data refer and introduces the concept of minimal generalization that captures the property of the release process not distorting the data more than needed to achieve k-anonymity.
Abstract: Today's globally networked society places great demands on the dissemination and sharing of information. While in the past released information was mostly in tabular and statistical form, many situations call for the release of specific data (microdata). In order to protect the anonymity of the entities (called respondents) to which information refers, data holders often remove or encrypt explicit identifiers such as names, addresses, and phone numbers. Deidentifying data, however, provides no guarantee of anonymity. Released information often contains other data, such as race, birth date, sex, and ZIP code, that can be linked to publicly available information to reidentify respondents and inferring information that was not intended for disclosure. In this paper we address the problem of releasing microdata while safeguarding the anonymity of respondents to which the data refer. The approach is based on the definition of k-anonymity. A table provides k-anonymity if attempts to link explicitly identifying information to its content map the information to at least k entities. We illustrate how k-anonymity can be provided without compromising the integrity (or truthfulness) of the information released by using generalization and suppression techniques. We introduce the concept of minimal generalization that captures the property of the release process not distorting the data more than needed to achieve k-anonymity, and present an algorithm for the computation of such a generalization. We also discuss possible preference policies to choose among different minimal generalizations.

2,291 citations

Journal ArticleDOI
TL;DR: This paper provides a formal presentation of combining generalization and suppression to achieve k-anonymity and shows that Datafly can over distort data and µ-Argus can additionally fail to provide adequate protection.
Abstract: Often a data holder, such as a hospital or bank, needs to share person-specific records in such a way that the identities of the individuals who are the subjects of the data cannot be determined. One way to achieve this is to have the released records adhere to k- anonymity, which means each released record has at least (k-1) other records in the release whose values are indistinct over those fields that appear in external data. So, k- anonymity provides privacy protection by guaranteeing that each released record will relate to at least k individuals even if the records are directly linked to external information. This paper provides a formal presentation of combining generalization and suppression to achieve k-anonymity. Generalization involves replacing (or recoding) a value with a less specific but semantically consistent value. Suppression involves not releasing a value at all. The Preferred Minimal Generalization Algorithm (MinGen), which is a theoretical algorithm presented herein, combines these techniques to provide k-anonymity protection with minimal distortion. The real-world algorithms Datafly and µ-Argus are compared to MinGen. Both Datafly and µ-Argus use heuristics to make approximations, and so, they do not always yield optimal results. It is shown that Datafly can over distort data and µ-Argus can additionally fail to provide adequate protection.

1,765 citations


Network Information
Related Topics (5)
Wireless sensor network
142K papers, 2.4M citations
78% related
Encryption
98.3K papers, 1.4M citations
78% related
Cloud computing
156.4K papers, 1.9M citations
77% related
The Internet
213.2K papers, 3.8M citations
77% related
Social network
42.9K papers, 1.5M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
202348
2022112
202166
2020105
2019114