Topic

# Data set

About: Data set is a research topic. Over the lifetime, 14641 publications have been published within this topic receiving 281303 citations. The topic is also known as: dataset & database.

##### Papers published on a yearly basis

##### Papers

More filters

•

[...]

TL;DR: A set of simple, yet safe and robust non-parametric tests for statistical comparisons of classifiers is recommended: the Wilcoxon signed ranks test for comparison of two classifiers and the Friedman test with the corresponding post-hoc tests for comparisons of more classifiers over multiple data sets.

Abstract: While methods for comparing two learning algorithms on a single data set have been scrutinized for quite some time already, the issue of statistical tests for comparisons of more algorithms on multiple data sets, which is even more essential to typical machine learning studies, has been all but ignored. This article reviews the current practice and then theoretically and empirically examines several suitable tests. Based on that, we recommend a set of simple, yet safe and robust non-parametric tests for statistical comparisons of classifiers: the Wilcoxon signed ranks test for comparison of two classifiers and the Friedman test with the corresponding post-hoc tests for comparison of more classifiers over multiple data sets. Results of the latter can also be neatly presented with the newly introduced CD (critical difference) diagrams.

9,005 citations

••

[...]

TL;DR: This work presents a simple and efficient implementation of Lloyd's k-means clustering algorithm, which it calls the filtering algorithm, and establishes the practical efficiency of the algorithm's running time.

Abstract: In k-means clustering, we are given a set of n data points in d-dimensional space R/sup d/ and an integer k and the problem is to determine a set of k points in Rd, called centers, so as to minimize the mean squared distance from each data point to its nearest center. A popular heuristic for k-means clustering is Lloyd's (1982) algorithm. We present a simple and efficient implementation of Lloyd's k-means clustering algorithm, which we call the filtering algorithm. This algorithm is easy to implement, requiring a kd-tree as the only major data structure. We establish the practical efficiency of the filtering algorithm in two ways. First, we present a data-sensitive analysis of the algorithm's running time, which shows that the algorithm runs faster as the separation between clusters increases. Second, we present a number of empirical studies both on synthetically generated data and on real data sets from applications in color quantization, data compression, and image segmentation.

4,757 citations

•

[...]

TL;DR: Data mining is the search for new, valuable, and nontrivial information in large volumes of data, a cooperative effort of humans and computers that is possible to put data-mining activities into one of two categories: Predictive data mining, which produces the model of the system described by the given data set, or Descriptive data mining which produces new, nontrivials information based on the available data set.

Abstract: Understand the need for analyses of large, complex, information-rich data sets. Identify the goals and primary tasks of the data-mining process. Describe the roots of data-mining technology. Recognize the iterative character of a data-mining process and specify its basic steps. Explain the influence of data quality on a data-mining process. Establish the relation between data warehousing and data mining. Data mining is an iterative process within which progress is defined by discovery, through either automatic or manual methods. Data mining is most useful in an exploratory analysis scenario in which there are no predetermined notions about what will constitute an "interesting" outcome. Data mining is the search for new, valuable, and nontrivial information in large volumes of data. It is a cooperative effort of humans and computers. Best results are achieved by balancing the knowledge of human experts in describing problems and goals with the search capabilities of computers. In practice, the two primary goals of data mining tend to be prediction and description. Prediction involves using some variables or fields in the data set to predict unknown or future values of other variables of interest. Description, on the other hand, focuses on finding patterns describing the data that can be interpreted by humans. Therefore, it is possible to put data-mining activities into one of two categories: Predictive data mining, which produces the model of the system described by the given data set, or Descriptive data mining, which produces new, nontrivial information based on the available data set.

4,646 citations

••

[...]

TL;DR: The various physical factors affecting measured diffraction intensities are discussed, as are the scaling models which may be used to put the data on a consistent scale and algorithms used by the CCP4 scaling program SCALA.

Abstract: The various physical factors affecting measured diffraction intensities are discussed, as are the scaling models which may be used to put the data on a consistent scale. After scaling, the intensities can be analysed to set the real resolution of the data set, to detect bad regions (e.g. bad images), to analyse radiation damage and to assess the overall quality of the data set. The significance of any anomalous signal may be assessed by probability and correlation analysis. The algorithms used by the CCP4 scaling program SCALA are described. A requirement for the scaling and merging of intensities is knowledge of the Laue group and point-group symmetries: the possible symmetry of the diffraction pattern may be determined from scores such as correlation coefficients between observations which might be symmetry-related. These scoring functions are implemented in a new program POINTLESS.

3,987 citations

••

[...]

TL;DR: A new algorithm is introduced for the purpose of cluster analysis which does not produce a clustering of a data set explicitly; but instead creates an augmented ordering of the database representing its density-based clustering structure.

Abstract: Cluster analysis is a primary method for database mining. It is either used as a stand-alone tool to get insight into the distribution of a data set, e.g. to focus further analysis and data processing, or as a preprocessing step for other algorithms operating on the detected clusters. Almost all of the well-known clustering algorithms require input parameters which are hard to determine but have a significant influence on the clustering result. Furthermore, for many real-data sets there does not even exist a global parameter setting for which the result of the clustering algorithm describes the intrinsic clustering structure accurately. We introduce a new algorithm for the purpose of cluster analysis which does not produce a clustering of a data set explicitly; but instead creates an augmented ordering of the database representing its density-based clustering structure. This cluster-ordering contains information which is equivalent to the density-based clusterings corresponding to a broad range of parameter settings. It is a versatile basis for both automatic and interactive cluster analysis. We show how to automatically and efficiently extract not only 'traditional' clustering information (e.g. representative points, arbitrary shaped clusters), but also the intrinsic clustering structure. For medium sized data sets, the cluster-ordering can be represented graphically and for very large data sets, we introduce an appropriate visualization technique. Both are suitable for interactive exploration of the intrinsic clustering structure offering additional insights into the distribution and correlation of the data.

3,490 citations