scispace - formally typeset
Search or ask a question
Topic

Data synchronization

About: Data synchronization is a research topic. Over the lifetime, 6810 publications have been published within this topic receiving 78278 citations.


Papers
More filters
Proceedings ArticleDOI
03 Nov 2004
TL;DR: The FTSP achieves its robustness by utilizing periodic flooding of synchronization messages, and implicit dynamic topology update and comprehensive error compensation including clock skew estimation, which is markedly better than that of the existing RBS and TPSN algorithms.
Abstract: Wireless sensor network applications, similarly to other distributed systems, often require a scalable time synchronization service enabling data consistency and coordination. This paper describes the Flooding Time Synchronization Protocol (FTSP), especially tailored for applications requiring stringent precision on resource limited wireless platforms. The proposed time synchronization protocol uses low communication bandwidth and it is robust against node and link failures. The FTSP achieves its robustness by utilizing periodic flooding of synchronization messages, and implicit dynamic topology update. The unique high precision performance is reached by utilizing MAC-layer time-stamping and comprehensive error compensation including clock skew estimation. The sources of delays and uncertainties in message transmission are analyzed in detail and techniques are presented to mitigate their effects. The FTSP was implemented on the Berkeley Mica2 platform and evaluated in a 60-node, multi-hop setup. The average per-hop synchronization error was in the one microsecond range, which is markedly better than that of the existing RBS and TPSN algorithms.

2,267 citations

Journal ArticleDOI
01 May 2005
TL;DR: In this paper, a survey and evaluation of clock synchronization protocols based on a palette of factors such as precision, accuracy, cost, and complexity is presented, which can help developers either in choosing an existing synchronization protocol or in defining a new protocol that is best suited to the specific needs of a sensor network application.
Abstract: Recent advances in micro-electromechanical (MEMS) technology have led to the development of small, low-cost, and low-power sensors Wireless sensor networks (WSNs) are large-scale networks of such sensors, dedicated to observing and monitoring various aspects of the physical world In such networks, data from each sensor is agglomerated using data fusion to form a single meaningful result, which makes time synchronization between sensors highly desirable This paper surveys and evaluates existing clock synchronization protocols based on a palette of factors like precision, accuracy, cost, and complexity The design considerations presented here can help developers either in choosing an existing synchronization protocol or in defining a new protocol that is best suited to the specific needs of a sensor-network application Finally, the survey provides a valuable framework by which designers can compare new and existing synchronization protocols

1,018 citations

Journal Article
TL;DR: In this article, a service model for time synchronization is proposed to better support the broad range of application requirements seen in sensor networks, while meeting the unique resource constraints found in such systems.
Abstract: Recent advances in miniaturization and low-cost, low-power design have led to active research in large-scale networks of small, wireless, low-power sensors and actuators. Time synchronization is a critical piece of infrastructure in any distributed system, but wireless sensor networks make particularly extensive use of synchronized time. Almost any form of sensor data fusion or coordinated actuation requires synchronized physical time for reasoning about events in the physical world. However, while the clock accuracy and precision requirements are often stricter in sensor networks than in traditional distributed systems, energy and channel constraints limit the resources available to meet these goals. New approaches to time synchronization can better support the broad range of application requirements seen in sensor networks, while meeting the unique resource constraints found in such systems. We first describe the design principles we have found useful in this problem space: tiered and multi-modal architectures are a better fit than a single solution forced to solve all problems; tunable methods allow synchronization to be more finely tailored to problem at hand; peer-to-peer synchronization eliminates the problems associated with maintaining a global timescale. We propose a new service model for time synchronization that provides a much more natural expression of these techniques: explicit timestamp conversions . We describe the implementation and characterization of several synchronization methods that exemplify our design principles. Reference-Broadcast Synchronization achieves high precision at low energy cost by leveraging the broadcast property inherent to wireless communication. A novel multi-hop algorithm allows RBS timescales to be federated across broadcast domains. Post-Facto Synchronization can make systems significantly more efficient by relaxing the traditional constraint that clocks must be kept in continuous synchrony. Finally, we describe our experience in applying our new methods to the implementation of a number of research and commercial sensor network applications.

663 citations

Proceedings ArticleDOI
15 Jun 2010
TL;DR: The networked sensor setup and the methodology for data acquisition, synchronization and curation, and the use of the dataset to develop new sensor network self-organization principles and machine learning techniques for activity recognition in opportunistic sensor configurations are described.
Abstract: We deployed 72 sensors of 10 modalities in 15 wireless and wired networked sensor systems in the environment, in objects, and on the body to create a sensor-rich environment for the machine recognition of human activities. We acquired data from 12 subjects performing morning activities, yielding over 25 hours of sensor data. We report the number of activity occurrences observed during post-processing, and estimate that over 13000 and 14000 object and environment interactions occurred. We describe the networked sensor setup and the methodology for data acquisition, synchronization and curation. We report on the challenges and outline lessons learned and best practice for similar large scale deployments of heterogeneous networked sensor systems. We evaluate data acquisition quality for on-body and object integrated wireless sensors; there is less than 2.5% packet loss after tuning. We outline our use of the dataset to develop new sensor network self-organization principles and machine learning techniques for activity recognition in opportunistic sensor configurations. Eventually this dataset will be made public.

659 citations

Journal ArticleDOI
TL;DR: Depending on the types and number of tolerated faults, this paper presents upper bounds on the achievable synchronization accuracy for external and internal synchronization in a distributed real-time system.
Abstract: The generation of a fault-tolerant global time base with known accuracy of synchronization is one of the important operating system functions in a distributed real-time system. Depending on the types and number of tolerated faults, this paper presents upper bounds on the achievable synchronization accuracy for external and internal synchronization in a distributed real-time system. The concept of continuous versus instantaneous synchronization is introduced in order to generate a uniform common time base for local, global, and external time measurements. In the last section, the functions of a VLSI clock synchronization unit, which improves the synchronization accuracy and reduces the CPU load, are described. With this unit, the CPU overhead and the network traffic for clock synchronization in state-of-the-art distributed real-time systems can be reduced to less than 1 percent.

625 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
84% related
Node (networking)
158.3K papers, 1.7M citations
84% related
Wireless sensor network
142K papers, 2.4M citations
84% related
Wireless
133.4K papers, 1.9M citations
83% related
Wireless network
122.5K papers, 2.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202323
202252
202197
2020263
2019540
2018452