scispace - formally typeset
Search or ask a question
Topic

Data transmission

About: Data transmission is a research topic. Over the lifetime, 68767 publications have been published within this topic receiving 563195 citations.


Papers
More filters
Book
01 Jan 1994
TL;DR: This book discusses Elements of an Electrical Communication System, a manual for the design of Communication Channels and their Characteristics, and Random Processes: Basic Concepts, which describes random processes in the Frequency Domain.
Abstract: (NOTE: Each chapter concludes with Further Reading and Problems.) 1. Introduction. Historical Review. Elements of an Electrical Communication System. Communication Channels and Their Characteristics. Mathematical Models for Communication Channels. Organization of the Book. 2. Frequency Domain Analysis of Signals and Systems. Fourier Series. Fourier Transforms. Power and Energy. Sampling of Bandlimited Signals. Bandpass Signals. 3. Analog Signal Transmission and Reception. Introduction to Modulation. Amplitude Modulation (AM). Angle Modulation. Radio and Television Broadcasting. Mobile Radio Stations. 4. Random Processes. Probability and Random Variables. Random Processes: Basic Concepts. Random Processes in the Frequency Domain. Gaussian and White Processes. Bandlimited Processes and Sampling. Bandpass Processes. 5. Effect of Noise on Analog Communication Systems. Effect of Noise on Linear-Modulation Systems. Carrier-Phase Estimation with a Phase-Locked Loop (PLL). Effect of Noise on Angle Modulation. Comparison of Analog-Modulation Systems. Effects of Transmission Losses and Noise in Analog Communication Systems. 6. Information Sources and Source Coding. Modeling of Information Sources. Source-Coding Theorem. Source-Coding Algorithms. Rate-Distortion Theory. Quantization. Waveform Coding. Analysis-Synthesis Techniques. Digital Audio Transmission and Digital Audio Recording. The JPEG Image-Coding Standard. 7. Digital Transmission through the Additive White Gaussian Noise Channel. Geometric Representation of Signal Waveforms. Pulse Amplitude Modulation. Two-Dimensional Signal Waveforms. Multidimensional Signal Waveforms. Optimum Receiver for Digitally Modulated Signals in Additive White Gaussian Noise. Probability of Error for Signal Detection in Additive White Gaussian Noise. Performance Analysis for Wireline and Radio Communication Channels. Symbol Synchronization. 8. Digital Transmission through Bandlimited AWGN Channels. Digital Transmission through Bandlimited Channels. The Power Spectrum of Digitally Modulated Signals. Signal Design for Bandlimited Channels. Probability of Error in Detection of Digital PAM. Digitally Modulated Signals with Memory. System Design in the Presence of Channel Distortion. Multicarrier Modulation and OFDM. 9. Channel Capacity and Coding. Modeling of Communication Channels. Channel Capacity. Bounds on Communication. Coding for Reliable Communication. Linear Block Codes. Cyclic Codes. Convolutional Codes. Complex Codes Based on Combination of Simple Codes. Coding for Bandwidth-Constrained Channels. Practical Applications of Coding. 10. Wireless Communications. Digital Transmission on Fading Multipath Channels. Continuous Carrier-Phase Modulation. Spread-Spectrum Communication Systems. Digital Cellular Communication Systems. Appendix A: The Probability of Error for Multichannel Reception of Binary Signals. References. Index.

1,029 citations

Journal ArticleDOI
TL;DR: This paper shows that the configuration with spatially orthogonal signal transmission is equivalent to additional virtual sensors which extend the array aperture with virtual spatial tapering and provides higher performance in target detection, angular estimation accuracy, and angular resolution.
Abstract: In this paper, we propose a new space-time coding configuration for target detection and localization by radar or sonar systems. In common active array systems, the transmitted signal is usually coherent between the different elements of the array. This configuration does not allow array processing in the transmit mode. However, space-time coding of the transmitted signals allows to digitally steer the beam pattern in the transmit in addition to the received signal. The ability to steer the transmitted beam pattern, helps to avoid beam shape loss. We show that the configuration with spatially orthogonal signal transmission is equivalent to additional virtual sensors which extend the array aperture with virtual spatial tapering. These virtual sensors can be used to form narrower beams with lower sidelobes and, therefore, provide higher performance in target detection, angular estimation accuracy, and angular resolution. The generalized likelihood ratio test for target detection and the maximum likelihood and Cramer-Rao bound for target direction estimation are derived for an arbitrary signal coherence matrix. It is shown that the optimal performance is achieved for orthogonal transmitted signals. Target detection and localization performances are evaluated and studied theoretically and via simulations

990 citations

Posted Content
TL;DR: This paper considers optimization of point-to-point data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating in a wireless fading channel, and introduces a directional water-filling algorithm which provides a simple and concise interpretation of the necessary optimality conditions.
Abstract: Wireless systems comprised of rechargeable nodes have a significantly prolonged lifetime and are sustainable. A distinct characteristic of these systems is the fact that the nodes can harvest energy throughout the duration in which communication takes place. As such, transmission policies of the nodes need to adapt to these harvested energy arrivals. In this paper, we consider optimization of point-to-point data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating in a wireless fading channel. We consider two objectives: maximizing the throughput by a deadline, and minimizing the transmission completion time of the communication session. We optimize these objectives by controlling the time sequence of transmit powers subject to energy storage capacity and causality constraints. We, first, study optimal offline policies. We introduce a directional water-filling algorithm which provides a simple and concise interpretation of the necessary optimality conditions. We show the optimality of an adaptive directional water-filling algorithm for the throughput maximization problem. We solve the transmission completion time minimization problem by utilizing its equivalence to its throughput maximization counterpart. Next, we consider online policies. We use stochastic dynamic programming to solve for the optimal online policy that maximizes the average number of bits delivered by a deadline under stochastic fading and energy arrival processes with causal channel state feedback. We also propose near-optimal policies with reduced complexity, and numerically study their performances along with the performances of the offline and online optimal policies under various different configurations.

950 citations

Journal ArticleDOI
08 Jun 2017-Nature
TL;DR: This work exploits the scalability of microresonator-based DKS frequency comb sources for massively parallel optical communications at both the transmitter and the receiver, and demonstrates the potential of these sources to replace the arrays of continuous-wave lasers that are currently used in high-speed communications.
Abstract: Solitons are waveforms that preserve their shape while propagating, as a result of a balance of dispersion and nonlinearity. Soliton-based data transmission schemes were investigated in the 1980s and showed promise as a way of overcoming the limitations imposed by dispersion of optical fibres. However, these approaches were later abandoned in favour of wavelength-division multiplexing schemes, which are easier to implement and offer improved scalability to higher data rates. Here we show that solitons could make a comeback in optical communications, not as a competitor but as a key element of massively parallel wavelength-division multiplexing. Instead of encoding data on the soliton pulse train itself, we use continuous-wave tones of the associated frequency comb as carriers for communication. Dissipative Kerr solitons (DKSs) (solitons that rely on a double balance of parametric gain and cavity loss, as well as dispersion and nonlinearity) are generated as continuously circulating pulses in an integrated silicon nitride microresonator via four-photon interactions mediated by the Kerr nonlinearity, leading to low-noise, spectrally smooth, broadband optical frequency combs. We use two interleaved DKS frequency combs to transmit a data stream of more than 50 terabits per second on 179 individual optical carriers that span the entire telecommunication C and L bands (centred around infrared telecommunication wavelengths of 1.55 micrometres). We also demonstrate coherent detection of a wavelength-division multiplexing data stream by using a pair of DKS frequency combs-one as a multi-wavelength light source at the transmitter and the other as the corresponding local oscillator at the receiver. This approach exploits the scalability of microresonator-based DKS frequency comb sources for massively parallel optical communications at both the transmitter and the receiver. Our results demonstrate the potential of these sources to replace the arrays of continuous-wave lasers that are currently used in high-speed communications. In combination with advanced spatial multiplexing schemes and highly integrated silicon photonic circuits, DKS frequency combs could bring chip-scale petabit-per-second transceivers into reach.

922 citations

Journal ArticleDOI
Y. Sato1
TL;DR: A self-recovering equalization algorithm, which is employed in multilevel amplitude-modulated data transmission, is presented and the convergence processes of the present self-reaching equalizer are shown by computer simulation.
Abstract: A self-recovering equalization algorithm, which is employed in multilevel amplitude-modulated data transmission, is presented. Such a self-recovering equalizer has been required when time-division multiplexed (TDM) voice or picturephone PCM signals must be transmitted over the existing frequency-division multiplexed (FDM) transmission channel. The present self-recovering equalizer is quite simple, as is a conventional binary equalizer. The convergence processes of the present self-recovering equalizer are shown by computer simulation. Some theoretical considerations on this convergence process are also added.

909 citations


Network Information
Related Topics (5)
Wireless
133.4K papers, 1.9M citations
94% related
Network packet
159.7K papers, 2.2M citations
92% related
Wireless sensor network
142K papers, 2.4M citations
91% related
Wireless network
122.5K papers, 2.1M citations
90% related
Node (networking)
158.3K papers, 1.7M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023323
2022808
20211,465
20203,232
20194,193