scispace - formally typeset
Search or ask a question
Topic

Data transmission

About: Data transmission is a research topic. Over the lifetime, 68767 publications have been published within this topic receiving 563195 citations.


Papers
More filters
Journal ArticleDOI
27 May 2011
TL;DR: Approaches to the design of intelligent waveforms, that are suitable for simultaneously performing both data transmission and radar sensing, are proposed, based on classical phase-coded waveforms utilized in wireless communications.
Abstract: Since traditional radar signals are “unintelligent,” regarding the amount of information they convey on the bandwidth they occupy, a joint radar and wireless communication system would constitute a unique platform for future intelligent transportation networks effecting the essential tasks of environmental sensing and the allocation of ad-hoc communication links, in terms of both spectrum efficiency and cost-effectiveness. In this paper, approaches to the design of intelligent waveforms, that are suitable for simultaneously performing both data transmission and radar sensing, are proposed. The approach is based on classical phase-coded waveforms utilized in wireless communications. In particular, requirements that allow for employing such signals for radar measurements with high dynamic range are investigated. Also, a variety of possible radar processing algorithms are discussed. Moreover, the applicability of multiple antenna techniques for direction-of-arrival estimation is considered. In addition to theoretical considerations, the paper presents system simulations and measurement results of complete “RadCom” systems, demonstrating the practical feasibility of integrated communications and radar applications.

897 citations

Journal ArticleDOI
TL;DR: Suboptimal strategies for combining partial transmit sequences that achieve similar performance but with reduced complexity are presented.
Abstract: Orthogonal frequency-division multiplexing (OFDM) is an attractive technique for achieving high-bit-rate wireless data transmission. However, the potentially large peak-to-average power ratio (PAP) has limited its application. Recently, two promising techniques for improving the PAP statistics of an OFDM signal have been proposed: the selective mapping and partial transmit sequence approaches. Here, we present suboptimal strategies for combining partial transmit sequences that achieve similar performance but with reduced complexity.

896 citations

Journal ArticleDOI
TL;DR: With the proposed channel estimator, combining OPDM with transmitter diversity using space-time coding is a promising technique for highly efficient data transmission over mobile wireless channels.
Abstract: Transmitter diversity is an effective technique to improve wireless communication performance. In this paper, we investigate transmitter diversity using space-time coding for orthogonal frequency division multiplexing (OFDM) systems in high-speed wireless data applications. We develop channel parameter estimation approaches, which are crucial for the decoding of the space-time codes, and we derive the MSE bounds of the estimators. The overall receiver performance using such a transmitter diversity scheme is demonstrated by extensive computer simulations. For an OFDM system with two transmitter antennas and two receiver antennas with transmission efficiency as high as 1.475 bits/s/Hz, the required signal-to-noise ratio is only about 7 dB for a 1% bit error rate and 9 dB for a 10% word error rate assuming channels with two-ray, typical urban, and hilly terrain delay profiles, and a 40-Hz Doppler frequency. In summary, with the proposed channel estimator, combining OPDM with transmitter diversity using space-time coding is a promising technique for highly efficient data transmission over mobile wireless channels.

894 citations

Journal ArticleDOI
TL;DR: An overview of emerging technologies and system research that might lead to ubiquitous THz communication systems in the future is given.
Abstract: The increasing demand of unoccupied and unregulated bandwidth for wireless communication systems will inevitably lead to the extension of operation frequencies toward the lower THz frequency range. Higher carrier frequencies will allow for fast transmission of huge amounts of data as needed for new emerging applications. Despite the tremendous hurdles that have to be overcome with regard to sources and detectors, circuit and antenna technology and system architecture to realize ultrafast data transmission in a scenario with extensive transmission loss, a new area of research is beginning to form. In this article we give an overview of emerging technologies and system research that might lead to ubiquitous THz communication systems in the future.

878 citations

Journal ArticleDOI
TL;DR: In this paper, a non-imaging optical MIMO system does not perform properly at all receiver positions due to symmetry, but an imaging based system can operate under all foreseeable circumstances, and simulations show such systems can operate at several hundred Mbit/s, and up to G Bit/s in many circumstances.
Abstract: Solid-state lighting is a rapidly growing area of research and applications, due to the reliability and predicted high efficiency of these devices. The white LED sources that are typically used for general illumination can also be used for data transmission, and Visible Light Communications (VLC) is a rapidly growing area of research. One of the key challenges is the limited modulation bandwidth of sources, typically several MHz. However, as a room or coverage space would typically be illuminated by an array of LEDs there is the potential for parallel data transmission, and using optical MIMO techniques is potentially attractive for achieving high data rates. In this paper we investigate non-imaging and imaging MIMO approaches: a non-imaging optical MIMO system does not perform properly at all receiver positions due to symmetry, but an imaging based system can operate under all foreseeable circumstances. Simulations show such systems can operate at several hundred Mbit/s, and up to Gbit/s in many circumstances.

846 citations


Network Information
Related Topics (5)
Wireless
133.4K papers, 1.9M citations
94% related
Network packet
159.7K papers, 2.2M citations
92% related
Wireless sensor network
142K papers, 2.4M citations
91% related
Wireless network
122.5K papers, 2.1M citations
90% related
Node (networking)
158.3K papers, 1.7M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023323
2022808
20211,465
20203,232
20194,193