scispace - formally typeset
Search or ask a question
Topic

DC bias

About: DC bias is a research topic. Over the lifetime, 12738 publications have been published within this topic receiving 128306 citations.


Papers
More filters
Journal ArticleDOI

[...]

01 Nov 1996
TL;DR: In this paper, some old and new circuit techniques are described for the compensation of the amplifier's most important nonideal effects including the noise (mainly thermal and 1/f noise), the input-referred dc offset voltage as well as the finite gain.
Abstract: In linear IC's fabricated in a low-voltage CMOS technology, the reduction of the dynamic range due to the dc offset and low frequency noise of the amplifiers becomes increasingly significant. Also, the achievable amplifier gain is often quite low in such a technology, since cascoding may not be a practical circuit option due to the resulting reduction of the output signal swing. In this paper, some old and some new circuit techniques are described for the compensation of the amplifier's most important nonideal effects including the noise (mainly thermal and 1/f noise), the input-referred dc offset voltage as well as the finite gain resulting in a nonideal virtual ground at the input.

1,765 citations

Journal ArticleDOI

[...]

02 Oct 1988
TL;DR: In this paper, three DC/DC converter topologies suitable for high power-density high power applications are presented, which operate in a soft-switched manner, making possible a reduction in device switching losses and an increase in switching frequency.
Abstract: Three DC/DC converter topologies suitable for high-power-density high-power applications are presented. All three circuits operate in a soft-switched manner, making possible a reduction in device switching losses and an increase in switching frequency. The three-phase dual-bridge converter proposed is shown to have the most favorable characteristics. This converter consists of two three-phase inverter stages operating in a high-frequency six-step mode. In contrast to existing single-phase AC-link DC/DC converters, lower turn-off peak currents in the power devices and lower RMS current ratings for both the input and output filter capacitors are obtained. This is in addition to smaller filter element values due to the higher-frequency content of the input and output waveforms. Furthermore, the use of a three-phase symmetrical transformer instead of single-phase transformers and a better utilization of the available apparent power of the transformer (as a consequence of the controlled output inverter) significantly increase the power density attainable. >

1,693 citations

Journal ArticleDOI

[...]

Behzad Razavi1
TL;DR: The issues and tradeoffs in the design and monolithic implementation of direct-conversion receivers are described and circuit techniques that can alleviate the drawbacks of this architecture are proposed.
Abstract: This paper describes the issues and tradeoffs in the design and monolithic implementation of direct-conversion receivers and proposes circuit techniques that can alleviate the drawbacks of this architecture. Following a brief study of heterodyne and image-reject topologies, the direct-conversion architecture is introduced and effects such as dc offset, I/Q mismatch, even-order distortion, flicker noise, and oscillator leakage are analyzed. Related design techniques for amplification and mixing, quadrature phase calibration, and baseband processing are also described.

1,262 citations

Journal ArticleDOI

[...]

TL;DR: The authors demonstrated the effectiveness of the proposed control scheme by using computer simulation and experiments to eliminate the DC link voltage ripple and the DC component of the reactive power.
Abstract: Voltage unbalance in a three-phase system causes performance deterioration of PWM power converters by producing 120 Hz voltage ripples in the DC link and by increasing the reactive power. To eliminate the DC link voltage ripple and the DC component of the reactive power, both positive- and negative-sequence currents should be controlled simultaneously, according to the paper by Rioual et al (1996). The authors used two synchronous reference frames: a positive-sequence current regulated by a proportional integral (PI) controller in a positive synchronous reference frame (SRF); and a negative-sequence current regulated by a PI controller in a negative SRF. In the positive SRF, which rotates counterclockwise, the positive sequence appears as DC, while the negative sequence appears as 120 Hz. In contrast, in the negative SRF, which rotates clockwise, the negative sequence appears as DC, while the positive sequence appears as 120 Hz. By deleting 120 Hz components using a notch filter in each SRF, one can measure positive- and negative-sequence currents separately, and use them for constructing two feedback controllers. Since the negative-sequence current is also controlled in its own SRF by a DC command, this approach yields better performance without increasing the control gain. Note that, since the controller is implemented by a software routine in the digital signal professor chip, using two SRFs does not require additional hardware. The authors demonstrated the effectiveness of the proposed control scheme by using computer simulation and experiments.

868 citations

Patent

[...]

22 Mar 2010
TL;DR: In this paper, a wireless power receiver includes a receive antenna for coupling with near field radiation in a coupling-mode region generated by a transmit antenna operating at a resonant frequency.
Abstract: Exemplary embodiments are directed to wireless power. A wireless power receiver includes a receive antenna for coupling with near field radiation in a coupling-mode region generated by a transmit antenna operating at a resonant frequency. The receive antenna generates an RF signal when coupled to the near filed radiation and a rectifier converts the RF signal to a DC input signal. A direct current (DC)-to-DC converter coupled to the DC input signal generates a DC output signal. A pulse modulator generate a pulse-width modulation signal to the DC-to-DC converter to adjust a DC impedance of the wireless power receiver by modifying a duty cycle of the pulse-width modulation signal responsive to at least one of a voltage of the DC input signal, a current of the DC input signal, a voltage of the DC output signal, and a current of the DC output signal.

777 citations


Network Information
Related Topics (5)
Voltage
296.3K papers, 1.7M citations
93% related
Capacitor
166.6K papers, 1.4M citations
92% related
Amplifier
163.9K papers, 1.3M citations
85% related
Transistor
138K papers, 1.4M citations
85% related
Dielectric
169.7K papers, 2.7M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202323
202262
2021264
2020386
2019459
2018435