scispace - formally typeset

DC motor

About: DC motor is a(n) research topic. Over the lifetime, 26290 publication(s) have been published within this topic receiving 223118 citation(s). more


BookDOI: 10.1002/9781118524336
01 Jan 2002-
Abstract: Preface.Basic Principles for Electric Machine Analysis.Direct--Current Machines.Reference--Frame Theory.Symmetrical Induction Machines.Synchronous Machines.Theory of Brushless dc Machines.Machine Equations in Operational Impedances and Time Constants.Linearized Machine Equations.Reduced--Order Machine Equations.Symmetrical and Unsymmetrical 2--Phase Induction Machines.Semicontrolled Bridge Converters.dc Machine Drives.Fully Controlled 3--Phase Bridge Converters.Induction Motor Drives.Brushless dc Motor Drives.Appendix: Trigonometric Relations, Constants and Conversion Factors, and Abbreviations.Index. more

Topics: Electric machine (64%), Electric motor (62%), Induction motor (61%) more

2,909 Citations

Open accessBook
09 Mar 1990-
Abstract: 1. Elementary Principles of Mechanics.- 1.1 Newtons Law.- 1.2 Moment of Inertia.- 1.3 Effect of Gearing.- 1.4 Power and Energy.- 1.5 Experimental Determination of Inertia.- 2. Dynamics of a Mechanical Drive.- 2.1 Equations Describing the Motion of a Drive with Lumped Inertia.- 2.2 Two Axes Drive in Polar Coordinates.- 2.3 Steady State Characteristics of Motors and Loads.- 2.4 Stable and Unstable Operating Points.- 3. Integration of the Simplified Equation of Motion.- 3.1 Solution of the Linearised Equation.- 3.1.1 Start of a Motor with Shunt-type Characteristic at No-load.- 3.1.2 Starting the Motor with a Load Torque Proportional to Speed.- 3.1.3 Loading Transient of the Motor Initially Running at No-load Speed.- 3.1.4 Starting of a DC Motor by Sequentially Short-circuiting Starting Resistors.- 3.2 Analytical Solution of Nonlinear Differential Equation.- 3.3 Numerical and Graphical Integration.- 4. Thermal Effects in Electrical Machines.- 4.1 Power Losses and Temperature Restrictions.- 4.2 Heating of a Homogeneous Body.- 4.3 Different Modes of Operation.- 4.3.1 Continuous Duty.- 4.3.2 Short Time Intermittent Duty.- 4.3.3 Periodic intermittent duty.- 5. Separately Excited DC Machine.- 5.1 Introduction.- 5.2 Mathematical Model of the DC Machine.- 5.3 Steady State Characteristics with Armature and Field Control.- 5.3.1 Armature Control.- 5.3.2 Field Control.- 5.3.3 Combined Armature and Field Control.- 5.4 Dynamic Behaviour of DC Motor with Constant Flux.- 6. DC Motor with Series Field Winding.- 6.1 Block Diagram of a Series-wound Motor.- 6.2 Steady State Characteristics.- 7. Control of a Separately Excited DC Machine.- 7.1 Introduction.- 7.2 Cascade Control of DC Motor in the Armature Control Region.- 7.3 Cascade Control of DC Motor in the Field-weakening Region.- 7.4 Supplying a DC Motor from a Rotating Generator.- 8. Static Converter as a Power Actuator for DC Drives.- 8.1 Electronic Switching Devices.- 8.2 Line-commutated Converter in Single-phase Bridge Connection.- 8.3 Line-commutated Converter in Three-phase Bridge Connection.- 8.4 Line-commutated Converters with Reduced Reactive Power.- 8.5 Control Loop Containing an Electronic Power Converter.- 9. Control of Converter-supplied DC Drives.- 9.1 DC Drive with Line-commutated Converter.- 9.2 DC Drives with Force-commutated Converters.- 10. Symmetrical Three-Phase AC Machines.- 10.1 Mathematical Model of a General AC Machine.- 10.2 Induction Motor with Sinusoidal Symmetrical Voltages in Steady State.- 10.2.1 Stator Current, Current Locus.- 10.2.2 Steady State Torque, Efficiency.- 10.2.3 Comparison with Practical Motor Designs.- 10.2.4 Starting of the Induction Motor.- 10.3 Induction Motor with Impressed Voltages of Arbitrary Wave- forms.- 10.4 Induction Motor with Unsymmetrical Line Voltages in Steady State.- 10.4.1 Symmetrical Components.- 10.4.2 Single-phase Induction Motor.- 10.4.3 Single-phase Electric Brake for AC Crane-Drives.- 10.4.4 Unsymmetrical Starting Circuit for Induction Motor.- 11. Power Supplies for Adjustable Speed AC Drives.- 11.1 Pulse width modulated (PWM) Voltage Source Transistor Converter (IGBT).- 11.2 Voltage Source PWM Thyristor Converter.- 11.3 Current Source Thyristor Converters.- 11.4 Converter Without DC Link (Cycloconverter).- 12. Control of Induction Motor Drives.- 12.1 Control of Induction Motor Based on Steady State Machine Model.- 12.2 Rotor Flux Orientated Control of Current-fed Induction Motor.- 12.2.1 Principle of Field Orientation.- 12.2.2 Acquisition of Flux Signals.- 12.2.3 Effects of Residual Lag of the Current Control Loops.- 12.2.4 Digital Signal Processing.- 12.2.5 Experimental Results.- 12.2.6 Effects of a Detuned Flux Model.- 12.3 Control of Voltage-fed Induction Motor.- 12.4 Field Orientated Control of Induction Motor with a Current Source Converter.- 12.5 Control of an Induction Motor Without a Mechanical Sensor.- 12.5.1 Machine Model in Stator Flux Coordinates.- 12.5.2 Example of an "Encoderless Control".- 12.5.3 Simulation and Experimental Results.- 12.6 Control of an Induction Motor Using a Combined Flux Model.- 13. Induction Motor Drive with Reduced Speed Range.- 13.1 Doubly-fed Induction Machine with Constant Stator Frequency and Field-orientated Rotor Current.- 13.2 Control of a Line-side Voltage Source Converter as a Reactive Power Compensator.- 13.3 Wound-Rotor Induction with Slip-Power Recovery.- 14. Variable Frequency Synchronous Motor Drives.- 14.1 Control of Synchronous Motors with PM Excitation.- 14.2 Synchronous Motor with Field- and Damper-Windings.- 14.3 Synchronous Motor with Load-commutated Inverter (LCI- Drive).- 15. Some Applications of Controlled Electrical Drives.- 15.1 Speed Controlled Drives.- 15.2 Lineax Position Control.- 15.3 Lineax Position Control with Moving Reference Point.- 15.4 Time-optimal Position Control with Fixed Reference Point.- 15.5 Time-optimal Position Control with Moving Reference Point. more

Topics: Induction motor (66%), AC motor (65%), Universal motor (65%) more

2,833 Citations

Open accessBook
Mehrdad Ehsani, Yimin Gao, Ali Emadi1Institutions (1)
21 Sep 2009-
Abstract: Environmental Impact and History of Modern Transportation Air Pollution Global Warming Petroleum Resources Induced Costs Importance of Different Transportation Development Strategies to Future Oil Supply History of EVs History of HEVs History of Fuel Cell Vehicles Fundamentals of Vehicle Propulsion and Brake General Description of Vehicle Movement Vehicle Resistance Dynamic Equation Tire-Ground Adhesion and Maximum Tractive Effort Power Train Tractive Effort and Vehicle Speed Vehicle Power Plant and Transmission Characteristics Vehicle Performance Operating Fuel Economy Brake Performance Internal Combustion Engines 4S, Spark-Ignited IC Engines 4S, Compression-Ignition IC Engines 2S Engines Wankel Rotary Engines Stirling Engines Gas Turbine Engines Quasi-Isothermal Brayton Cycle Engines Electric Vehicles Configurations of EVs Performance of EVs Tractive Effort in Normal Driving Energy Consumption Hybrid Electric Vehicles Concept of Hybrid Electric Drive Trains Architectures of Hybrid Electric Drive Trains Electric Propulsion Systems DC Motor Drives Induction Motor Drives Permanent Magnetic BLDC Motor Drives SRM Drives Design Principle of Series (Electrical Coupling) Hybrid Electric Drive Train Operation Patterns Control Strategies Design Principles of a Series (Electrical Coupling) Hybrid Drive Train Design Example Parallel (Mechanically Coupled) Hybrid Electric Drive Train Design Drive Train Configuration and Design Objectives Control Strategies Parametric Design of a Drive Train Simulations Design and Control Methodology of Series-Parallel (Torque and Speed Coupling) Hybrid Drive Train Drive Train Configuration Drive Train Control Methodology Drive Train Parameters Design Simulation of an Example Vehicle Design and Control Principles of Plug-In Hybrid Electric Vehicles Statistics of Daily Driving Distance Energy Management Strategy Energy Storage Design Mild Hybrid Electric Drive Train Design Energy Consumed in Braking and Transmission Parallel Mild Hybrid Electric Drive Train Series-Parallel Mild Hybrid Electric Drive Train Peaking Power Sources and Energy Storages Electrochemical Batteries Ultracapacitors Ultra-High-Speed Flywheels Hybridization of Energy Storages Fundamentals of Regenerative Breaking Braking Energy Consumed in Urban Driving Braking Energy versus Vehicle Speed Braking Energy versus Braking Power Braking Power versus Vehicle Speed Braking Energy versus Vehicle Deceleration Rate Braking Energy on Front and Rear Axles Brake System of EV, HEV, and FCV Fuel Cells Operating Principles of Fuel Cells Electrode Potential and Current-Voltage Curve Fuel and Oxidant Consumption Fuel Cell System Characteristics Fuel Cell Technologies Fuel Supply Non-Hydrogen Fuel Cells Fuel Cell Hybrid Electric Drive Train Design Configuration Control Strategy Parametric Design Design Example Design of Series Hybrid Drive Train for Off-Road Vehicles Motion Resistance Tracked Series Hybrid Vehicle Drive Train Architecture Parametric Design of the Drive Train Engine/Generator Power Design Power and Energy Design of Energy Storage Appendices Index more

Topics: Hybrid drive (65%), Hybrid vehicle (64%), Battery electric vehicle (64%) more

1,181 Citations

14 Feb 2008-
Abstract: A surgical cutting and fastening instrument. The instrument comprises an end effector, a shaft connected to the end effector, and a handle connected to the shaft. The handle comprises an electric, DC motor connected to a drive train in the shaft for powering the drive train. The handle also comprises a power pack that comprises at least one charge-accumulating device connected to the DC motor for powering the DC motor. more

Topics: DC motor (56%), Drivetrain (52%), Robot end effector (50%)

1,053 Citations

Open accessBook
01 Jan 1994-
Abstract: Written for electrical, electronics, and mechanical engineers responsible for designing and specifying motors, the book provides details of brushless DC and synchronous motors, as well as both radial and axial motor topologies. Beginning with a discussion of the fundamentals of generic motor design, it logically progresses to a set of more advanced, yet easily understandable, concepts for designing brushless permanent-magnet motors. In addition, the author fully explains techniques for magnetic modelling and circuit analysis, shows how magnetic circuit analysis applies to motor design, describes all major aspects of motor operation and design in simple mathematical terms, develops rigorous design equations for radial flux and axial flux motors, and illustrates basic motor drive schemes. All common motor design terms are clearly defined and a wealth of charts, tables and equations are included. more

Topics: Synchronous motor (64%), DC motor (62%), Brushed DC electric motor (62%) more

983 Citations

No. of papers in the topic in previous years

Top Attributes

Show by:

Topic's top 5 most impactful authors

Bhim Singh

101 papers, 1.9K citations

Jin Hur

22 papers, 156 citations

K. T. Chau

20 papers, 428 citations

Hamid A. Toliyat

16 papers, 471 citations

Victor Manuel Hernández-Guzmán

14 papers, 248 citations

Network Information
Related Topics (5)
Induction motor

50.6K papers, 559.6K citations

93% related
Direct torque control

22.6K papers, 341.1K citations

92% related
Synchronous motor

30.3K papers, 384.7K citations

91% related
Electric motor

57.9K papers, 512.8K citations

91% related
PID controller

56.9K papers, 527K citations

90% related